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Preface

Swarm intelligence is a modern artificial intelligence discipline that is con-
cerned with the design of multiagent systems with applications, e.g., in op-
timization and in robotics. The design paradigm for these systems is funda-
mentally different from more traditional approaches.

Instead of a sophisticated controller that governs the global behavior of
the system, the swarm intelligence principle is based on many unsophisticated
entities that cooperate in order to exhibit a desired behavior. Inspiration for
the design of these systems is taken from the collective behavior of social
insects such as ants, termites, bees, and wasps, as well as from the behavior of
other animal societies such as flocks of birds or schools of fish. Colonies of social
insects have mesmerized researchers for many years. However, the principles
that govern their behavior remained unknown for a long time. Even though
the single members of these societies are unsophisticated individuals, they are
able to achieve complex tasks in cooperation. Coordinated behavior emerges
from relatively simple actions or interactions between the individuals.

For example, ants, termites and wasps are able to build sophisticated nests
in cooperation, without any of the individuals having a global master plan of
how to proceed. Another example is the foraging behavior that ants or bees
exhibit when searching for food. While ants employ an indirect communication
strategy via chemical pheromone trails in order to find shortest paths between
their nest and food sources, bee colonies are very efficient in exploiting the
richest food sources based on scouts that communicate information about
new food sources by means of a so-called waggle dance. For more examples
and a more detailed description of the fascinating biological role models that
inspired swarm intelligence applications see Chaps. 1 and 2 of this book.

Scientists have applied these principles to new approaches, for example,
in optimization and the control of robots. Characterizing properties of the
resulting systems include robustness and flexibility. The field of research that
is concerned with collective behavior in self-organized and decentralized sys-
tems is now referred to as swarm intelligence. The term swarm intelligence
was first used by Beni and colleagues in the context of cellular robotic sys-
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tems where simple agents organize themselves through nearest neighbor inter-
actions. Meanwhile, the term swarm intelligence is used for a much broader
research field, as documented in the seminal book Swarm Intelligence—From
Natural to Artificial Systems by Dorigo, Theraulaz, and Bonabeau, published
by Oxford University Press. However, since the appearance of the above-
mentioned book in 1999, the literature on swarm intelligence topics has grown
significantly. This was the motivation for editing this book, whose intention
is to provide an overview of swarm intelligence to novices of the field, and
to provide researchers from the field with a collection of some of the most
interesting recent developments. In order to achieve this goal we were able
to convince some of the top researchers in their respective domains to write
chapters on their work.

Introductory chapters in the first part of the book are on biological
foundations of swarm intelligence, optimization, swarm robotics, and ap-
plications in new-generation telecommunication networks. Optimization and
swarm robotics are nowadays two of the domains where swarm intelligence
principles have been applied very successfully. A third and very popular ap-
plication domain concerns routing and loadbalancing in telecommunication
networks. The second part of the book contains chapters on more specific
topics of swarm intelligence research such as the evolution of robot behavior,
the use of particle swarms for dynamic optimization, organic computing, and
the decentralized traffic flow in production networks.

Finally, we hope that the readers enjoy reading this book, and, most impor-
tantly, that they learn something new by seeing things from a new perspective.

Barcelona, Odense Christian Blum
April 2008 Daniel Merkle
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Part I

Introduction



Biological Foundations of Swarm Intelligence

Madeleine Beekman1, Gregory A. Sword2, and Stephen J. Simpson2

1 Behaviour and Genetics of Social Insects Lab, School of Biological Sciences,
University of Sydney, Sydney, Australia
mbeekman@bio.usyd.edu.au

2 Behaviour and Physiology Research Group, School of Biological Sciences,
University of Sydney, Sydney, Australia
{greg.sword,stephen.simpson}@bio.usyd.edu.au

Summary. Why should a book on swarm intelligence start with a chapter on bi-
ology? Because swarm intelligence is biology. For millions of years many biological
systems have solved complex problems by sharing information with group members.
By carefully studying the underlying individual behaviours and combining behav-
ioral observations with mathematical or simulation modeling we are now able to
understand the underlying mechanisms of collective behavior in biological systems.
We use examples from the insect world to illustrate how patterns are formed, how
collective decisions are made and how groups comprised of large numbers of insects
are able to move as one. We hope that this first chapter will encourage and inspire
computer scientists to look more closely at biological systems.

1 Introduction

“He must be a dull man who can examine the exquisite structure of a comb
so beautifully adapted to its end, without enthusiastic admiration.”

Charles Darwin (1872)

When the Egyptians first started to keep honeybees 5,000 years ago, they
surely must have marveled on the beauty of the bees’ comb. Not only is the
honeycomb beautiful to look at, but how did the bees decide to build hexago-
nal cells and not cells of another form? Initially it was suggested that hexag-
onal cells hold the most honey, but the French physicist R.A.F. de Réaumur
realized that it was not the content of the cells that counts, but the amount
of material, wax, that is needed to divide a given area into equal cells. Obvi-
ously at that time it was assumed that the bees were “blindly using the highest
mathematics by divine guidance and command” (Ball 1999). It was not until
Darwin that the need for divine guidance was removed and the hexagonal cells
were thought to be the result of natural selection. In this view the bees’ an-
cestors ‘experimented’ with different shaped cells, but the bees that by chance
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‘decided’ to build hexagonal cells did better and, as a result, the building of
hexagonal cells spread. In Darwin’s words, “Thus, as I believe, the most won-
derful of all known instincts, that of the hive-bee, can be explained by natural
selection having taken advantage of numerous, successive, slight modifications
of simpler instincts; natural selection having by slow degrees, more and more
perfectly, led the bees to sweep equal spheres at a given distance from each
other in a double layer, and to build up and excavate the wax along the planes
of intersection.” (Chapter 7, Darwin 1872).

It was exactly such ‘Darwinian fables’ that inspired the biologist and math-
ematician D’Arcy Wentworth Thompson to write his book On Growth and
Form (Thompson 1917). The central thesis of this book is that biologists
overemphasize the role of evolution and that many phenomena can be more
parsimoniously explained by applying simple physical or mathematical rules.
Thompson argued that the bees’ hexagonal cells are a clear example of a pat-
tern formed by physical forces that apply to all layers of bubbles that are
pressed into a two-dimensional space. Bees’ wax is not different, the soft wax
forms bubbles that are simply pulled into a perfect hexagonal array by phys-
ical forces. Hence, the pattern forms spontaneously and no natural selection
or divine interference needs to be invoked (Ball 1999).

In fact, many instances of spontaneous pattern formation can be explained
by physical forces, and given the almost endless array of patterns and shapes
found around us, it is perhaps not surprising that such patterns are an in-
spiration for many people, scientists and non-scientists alike. Upon closer ex-
amination, amazing similarities reveal themselves among patterns and shapes
of very different objects, biological as well as innate objects. As we already
alluded above, the characteristic hexagonal pattern found on honeycombs are
not unique; the same pattern can be obtained by heating a liquid uniformly
from below. Autocatalytic reaction-diffusion systems will lead to Turing pat-
terns (think stripes on tigers) in both chemical and biological mediums (Kondo
and Asai 1995; Ball 1999), and minerals form patterns that have even been
mistaken for extra-terrestrial fossils (McKay et al. 1996).

The similarity of patterns found across a huge range of systems suggests
that there are underlying principles that are shared by both biological and
innate objects. Such similarities have been nicely illustrated by work on pat-
tern formation in bacterial colonies. When one manipulates the amount of
food available to bacteria and the viscosity of their medium, patterns emerge
that are remarkably similar to those found in, for example, snowflakes (Ben-
Jacob et al. 2000). In fact, the growth of bacterial colonies has proven to be
an important playground for testing ideas on non-living branching systems
(Ball 1999; Ben-Jacob and Levine 2001; Levine and Ben-Jacob 2004). As it
turns out, many branching patterns found across nature can be explained by
the same process, known as diffusion-limited aggregation, resulting from the
interactions of the particles, be they molecules or individual bacteria (Ball
1999).
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All patterns described above have been explained by approaching the sys-
tems from the bottom up: how do the particles interact with each other and
with their immediate environment? One may not really be surprised by the
fact that the same approach helps one to understand bacteria as well as
molecules. After all, bacteria aren’t really that different from molecules, are
they? In the following we will illustrate how such a bottom-up approach can
explain another remarkable feature of honeybees: the typical pattern of honey,
pollen and brood found on combs.

The honeybee’s comb is not only a marvel because of its almost perfect
hexagonal cells, the bees also seem to fill the cells with brood (eggs that
develop into larvae and then pupae and finally emerge as young workers or
males), pollen (to feed the brood) and nectar (which will be converted into
honey) in a characteristic pattern. This pattern consists of three distinct con-
centric regions: a central brood area, a surrounding rim of pollen, and a large
peripheral region of honey (Fig. 1). If we envision the honeybee colony as
a three-dimensional structure, this pattern is most pronounced in the cen-
tral combs which intersect a large portion of the almost spherical volume of
brood. How does this pattern come about? The storage of pollen close to the
brood certainly makes sense as it reduces the time needed to get the pollen
to the brood. But how do the bees know this? Do they use a blueprint (or
template) to produce this characteristic pattern, implying that there are par-
ticular locations specified for the deposition of pollen, nectar and brood? Or
is the pattern self-organized and emerges spontaneously from the dynamic
interactions between the honeybee queen, her workers and the brood? Scott
Camazine set out to determine which of these two hypotheses is the most
parsimonious (Camazine 1991).

The beauty of working on macroscopic entities such as insects is that you
can individually mark them. Honeybees are particularly suitable because we
can then house them in what we call an observation hive, a glass-walled home
for the bees. This means that we can study the interactions of the individually
marked bees without taking them out of their natural environment (see Fig. 1).

Camazine did just that. He monitored the egg-laying behavior of the queen,
of foragers that returned with pollen or nectar, and of nurse workers, those
that feed the brood. The first thing that he observed was that the queen
is rather sloppy in her egg-laying behavior, moving about in a zig-zag-like
manner, often missing empty cells and retracing her own steps. Camazine
further noticed that she has a clear preference to lay a certain distance from
the periphery of the comb and never more than a few cell lengths of the nearest
brood-containing cell. Interestingly, even though the queen somewhat has a
preference for at least the middle of the comb and the vicinity of brood, bees
returning with pollen or nectar did not seem to have a preference for specific
cells at all. When an empty comb was left in the colony and the deposition
of nectar and pollen observed, both could be found in any cell. Even though
such absence of a preference clearly refutes the blueprint hypothesis, it does
not explain how the characteristic pattern ultimately arises.
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Fig. 1. Because of their relatively large size, we can easily mark individual bees in a
colony. In this particular colony we marked 5,000 bees by combining numbered plates
and different paint colors. This allowed us to study their behavior at an individual
level. Photograph taken by M. Beekman.

As it turns out, bees do have a clear preference when they remove pollen
or honey from cells. Both honey and pollen are preferentially removed from
cells closest to the brood. By following the pattern of cell emptying during a
period in which foraging activity was low (overnight or during rain), Camazine
observed that all the cells that were emptied of their pollen or nectar were
located within two cells or less from a cell containing brood. No cells were
emptied that were further from brood cells. It is easy to see why the bees
would have a preference for the removal (through use) of pollen that is found
closest to the brood, as it is the brood that consumes the pollen. In addition,
nurse bees are the younger bees which restrict most of their activity to the
brood area (Seeley 1982).

The preferential removal of pollen and nectar from cells closest to cells
containing brood and the queen’s preference for laying eggs in cells close to
brood made Camazine realism that this might explain the honeybee’s char-
acteristic comb pattern. But how to prove this? This is where the physicist’s
approach comes in. By constructing a simulation model based on his behav-
ioral observations, Camazine was able to closely follow the emergence of the
pattern. Initially, both pollen and nectar were deposited randomly throughout
the frame with the queen wandering over the comb from her initial starting
point. Despite the random storage of pollen and nectar, the queen’s tendency
to lay eggs in the vicinity of cells that already contain brood rapidly results
in an area in which mostly brood is found. This is enhanced by the bees’ pref-
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Fig. 2. The typical pattern of honey (grey cells), pollen (white cells), and brood
(black cells) as seen on a honeybee’s comb. Shown is the top-left corner of the comb

erence to remove honey and pollen from cells close to brood, which increases
the availability to the queen of cells to lay eggs in. This further reduces the
number of cells available for storage of honey or pollen. Thus, the brood area
is continually freed of honey and pollen and filled with eggs resulting in a
compact brood structure. But how do the pollen and nectar get separated
(Fig. 2)?

Because initially both are deposited randomly, both pollen and nectar
will be present in the periphery of the comb. However, most pollen that gets
collected on a daily basis is consumed that same day. This means that given
the normal fluctuations in pollen availability, there is often a net loss of pollen,
with pollen present in the periphery being consumed at nearly the same rate
as pollen being stored elsewhere. At the same time, these empty cells are most
likely to be filled with nectar, as the nectar intake is much higher, and soon
there is no longer space to store pollen. Where is pollen stored then?

Eventually the only place left for pollen to be stored is the band of cells
adjacent to the brood. The developmental time from egg to adult is 21 days,
meaning that for three weeks a brood cell cannot be used for anything else.
But in the interface zone between the brood and the stores of honey at the
periphery, the preferential removal of honey and pollen continuously provides
a region in which cells are being emptied at a relatively high rate. And it
is these cells that are available for pollen. Other cells that become available
because bees emerge from them are found in the middle of the brood nest,
but these will then be preferentially emptied and again filled with eggs.

Without his computer simulation Camazine would not have been able to
fully understand how the behavior of the individual bees resulted in the orga-
nized pattern of brood, honey and pollen on the comb of the bees. And this
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is a general principle for understanding collective animal behavior: without
tools such as simulations or mathematics, it is impossible to translate individ-
ual behavior into collective behavior. And it is exactly with those tools that
originally came from disciplines outside of biology, and with the view that in-
teractions among individuals yield insights into the behavior of the collective,
that we biologists have learned from physics. In fact, we began this chapter by
illustrating that even biological phenomena can often more parsimoniously be
understood using physical explanations, and that many systems, both innate
and living, share the same physical principles. And it has exactly been these
similarities and the wide applicability of the mathematical rules that govern
diverse behaviors that have led to the field of Swarm Intelligence (e.g. Dorigo
et al. 1996; Dorigo and Di Caro 1999).

However, it is important to realise that our biological ‘particles’ are more
complex than molecules and atoms and that the ‘simple rules of thumb’ of
self-organization (Nicolis and Prigogine 1977) have only limited explanatory
power when it comes to biological systems (Seeley 2002). Bacterial colonies
may grow in a similar pattern as minerals, Turing patterns may be found
on fish, in shells and in chemical reactions, and we can understand the bees’
hexagonal cells using physics, but when it comes to biological systems, an
extra layer of complexity needs to be added. Besides the complexity of the
individuals, we cannot ignore natural selection acting on, for example, the
foraging efficiency of our ant colony, or the building behavior of our termites. If
the underlying principles that govern the building behavior of termites results
in colony-level behavior that is far from functional, this would be rapidly
selected against. Moreover, it is of no use to assume that certain systems
must behave similarly simply because they ‘look’ similar. It is true that if the
same mathematical model or behavioral algorithm captures the behavior of
different systems, then we can talk about similarities between systems that
go beyond simple analogy (Sumpter 2005). However, as we will explain in the
concluding section of this chapter, true biological inspiration needs to come not
from the superficial similarities between systems, but from the intricate and
often subtle differences between them. We shall illustrate this standpoint by
drawing examples from our own study systems: decentralized decision making
in social insects and the coordinated movement of animal groups.

2 Decentralized Decision Making

The evolution of sociality, the phenomenon where individuals live together
within a nest such as is found in many bees and wasps, and all ants and ter-
mites, has created the need for information transfer among group members.
No longer can each individual simply behave as if solitary, but actions by dif-
ferent group members need to be carefully tuned to achieve adaptive behavior
at the level of the whole group. Insect colonies need to make many collective
decisions, for example where to forage, which new nest to move to, when to
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reproduce, and how to divide the necessary tasks among the available work-
force. It is by now well known that such group-level decisions are the result
of the individual insects acting mainly on local information obtained from
interactions with their peers and their immediate environment (Bonabeau et
al. 1997; Camazine et al. 2001). In other words, decision making in insect so-
cieties is decentralized. To illustrate how insect colonies achieve this, we will
describe foraging and nest site selection in ants and honeybees.

2.1 Where to Forage?

In order to organize foraging, social insects need a form of recruitment. Re-
cruitment is a collective term for any behavior that results in an increase
in the number of individuals at a particular place (Deneubourg et al. 1986),
and allows insect societies to forage efficiently in an environment in which
food sources are patchily distributed or are too large to be exploited by single
individuals (Beckers et al. 1990; Beekman and Ratnieks 2000; Detrain and
Deneubourg 2002). In addition, social insects that transfer information about
the location of profitable food sources can exploit an area much larger than
those that lack such a sophisticated recruitment mechanism. Honeybees are a
prime example. Their sophisticated dance language (von Frisch 1967) allows
them to forage food sources as far as 10 km from the colony (Beekman and
Ratnieks 2000).

Exact recruitment mechanisms vary greatly among the social insects but
can be divided into two main classes: direct and indirect mechanisms. Mass
recruitment via a chemical trail is a good example of indirect recruitment.
The recruiter and recruited are not physically in contact with each other;
communication is instead via modulation of the environment: the trail. The
recruiter deposits a pheromone on the way back from a profitable food source
and recruits simply follow that trail. In a way such a recruitment mechanism is
comparable to broadcasting: simply spit out the information without control-
ling who receives it. The other extreme is transferring information, figuratively
speaking, mouth to mouth: direct recruitment. The best-known example of
such a recruitment mechanism is the honeybees’ dance language. Successful
foragers, the recruiters, perform a stylized ‘dance’ which encodes information
about the direction and distance of the food source found and up to seven
dance followers (Tautz and Rohrseitz 1998), potential recruits, are able to
extract this information based upon which they will leave the colony and try
to locate the advertised food source. Recruitment trails and the honeybee
dance language can be seen as the two extremes of a whole range of different
mechanisms used by social insects to convey information about profitable food
sources.

Many computer scientists are familiar with the double bridge experiment
as an example of the means by which foraging is organized in ant colonies. In
this experiment a colony of trail-laying ants is offered two equal food sources
located at the end of two paths of different lengths. After some time the
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vast majority of foragers converges on the shorter path (Beckers et al. 1993).
This collective choice for the nearest source is the result of a positive feedback
process: Ants finding food mark the environment with pheromone trails during
their return to the nest, and ants searching for food probabilistically follow
these trails.

The same trail-following behavior allows an ant colony to choose the best
food source out of several possibilities without the individual ants directly
comparing the quality of the food sources on offer. Experiments performed
on several species of ants have shown that ants modulate the amount of
pheromone deposited depending on the quality of the food source, such that
the better the quality, the more pheromone is left and the more likely other
ants are to follow the trail to the best food source (Beckers et al. 1990; Beckers
et al. 1993; Sumpter and Beekman 2003).

The success of the pheromone trail mechanism is likely to be due, at least
in part, to the non-linear response of ants to pheromone trails where, for ex-
ample, the distance that an ant follows a trail before leaving it is a saturating
function of the concentration of the pheromone (Pasteels et al. 1986). In other
words, the probability an ant will follow a trail is a function of trail strength
(expressed as concentration of pheromone), but ants never have a zero proba-
bility of losing a trail, irrespective of the strength of the trail. Mathematically,
non-linearity in response means an increase in the number and complexity of
solutions of the model equations that may be thought of as underlying for-
aging (linear equations have only a single solution). Biologically, a solution
to a differential equation corresponds to a distribution of ants between food
sources and an increase in solutions implies more flexibility as the ants ‘choose’
between possible solutions. Such an allocation of workers among food sources,
which assigns nearly all trail-following foragers to the best food source, is op-
timal provided the food source has unlimited capacity. When the food source
does not have unlimited capacity, the result is that trail-following ants will
be directed to a food source at which they cannot feed. In a way the colony
gets ‘stuck’ in a suboptimal solution and can only get out of this solution
by adding some layers of complexity, such as negative pheromones signalling
‘don’t go there’, or individual memory so that the individual remembers that
following that particular trail does not yield anything. A second drawback of
relying on pheromone trails is that it may be difficult to compete with an
existing trail, even if a better food source is found. If, due to initial condi-
tions, a mediocre food source is discovered first, ants that have found a better
quality food source after the first trail has been established will not be able
to build up a trail strong enough to recruit nest mates to the newly discov-
ered bonanza (Sumpter and Beekman 2003). Again, the ants are stuck in a
sub-optimal solution.

Because of their fundamentally different recruitment mechanism, honey-
bees cannot get stuck in a sub-optimal solution. This direct recruitment behav-
ior, the dance, encodes two main pieces of spatial information: the direction
and the distance to the target. Both are necessary as, unlike ants, honey-
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bees need to deal with a three-dimensional space. During a typical dance the
dancer strides forward about 1.5 times her length vigorously shaking her body
from side to side (Tautz et al. 1996). This is known as the ‘waggle phase’ of
the dance. After the waggle phase the bee makes an abrupt turn to the left
or right, circling back to start the waggle phase again. This is known as the
‘return phase’. At the end of the second waggle, the bee turns in the opposite
direction so that with every second circuit of the dance she will have traced
the famous figure-of-eight pattern of the waggle dance (von Frisch 1967).

The most information rich phase of the dance is the waggle phase. During
the waggle phase the bee aligns her body so that the angle of deflection from
vertical is similar to the angle of the goal from the sun’s current azimuth.
Distance information is encoded in the duration of the waggle phase. Dances
for nearby targets have short waggle phases, whereas dances for distant targets
have protracted waggle phases.

Dance followers need to be in close contact with the dancer in order to
be able to decode the directional information (Rohrseitz and Tautz 1999).
Hence, directional information is transferred to a limited number of individ-
uals. Moreover, more than one dance can take place at the same time, and
these dances can be either for the same site or for different sites. This means
that there is no direct competition between dances, provided the number of
bees available to ‘read’ a dance is infinite (a likely assumption). Dances are
only performed for food sources that are really worthwhile.

In order to assess the quality of the food encountered, a forager uses an
internal gauge to assess the profitability of her source, based on the sugar
content of the nectar and the distance of the patch from the colony, as well
as the ease with which nectar (or pollen) can be collected. A bee’s nervous
system, even at the start of her foraging career, has a threshold calibrated into
it which she uses to weigh these variables when deciding whether a patch is
firstly worth foraging for at all, and secondly worth advertising to her fellow
workers (Seeley 1995).

Dancing bees also adjust both the duration and the vigor of their dancing
as a function of profitability of their current source (Seeley et al. 2000). The
duration of the dance is measured by the number of waggle phases that the
dancer performs in a particular dance, and the vigor is measured by the time
interval between waggle phases (the return phase). The larger the number
of waggle phases, and the smaller the return phase, the more profitable the
source is and the more nest mates will be recruited to it. This means that
when two dances are performed simultaneously, one for a mediocre and one
for a superb site, the dance for the superb site is more likely to attract dance
followers than the one for the mediocre site. At the same time, however, the
dance for the mediocre site will still attract some dance followers, because
potential dance followers do not compare dances before deciding which one to
follow (Seeley and Towne 1992). The result is that a honeybee colony can not
only focus on the best food sources to the extent that most foragers will collect
food at the best sites (Seeley et al. 1991), but is also able to swiftly refocus
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its foraging force in response to day-to-day, or even hour-to-hour, variation
in available forage (Visscher and Seeley 1982; Schneider and McNally 1993;
Waddington et al. 1994; Beekman and Ratnieks 2000; Beekman et al. 2004).

2.2 Exploration Versus Exploitation

Most, if not all, studies on the allocation of foragers over food sources have
used stable environments in which the feeders or forage sites were kept con-
stant (e.g. Beckers et al. 1990; Seeley et al. 1991; Sumpter and Beekman 2003).
When conditions are stable the optimal solution from the colony’s point of
view is to focus solely on the best food source (provided this food source is
so large that it allows an infinite number of individuals to forage it) and this
is exactly what many species of ants do that collect stable food sources such
as honeydew (a sugary secretion produced by aphids) (Quinet et al. 1997), or
leaves (Darlington 1982; Wetterer et al. 1992). These species construct long
lasting trails (trunk trails) that connect the nest to foraging locations. In some
species trails are more or less permanent due to the workers actively changing
the environment by removing vegetation (Rosengren and Sundström 1987;
Fewell 1988). As soon as conditions are not stable, however, which is mostly
the case in nature, it becomes important to have a mechanism that allows
the change-over to another food source or food sources when they have be-
come more profitable or when the initial food source has been depleted. This
means that in order to do well in a dynamically changing environment, insect
colonies should allow the storage of information about food patches which are
currently exploited but at the same time allow the exploration for new sites.

The key to keeping track of changing conditions is the trade-off between
exploitation and exploration: the use of existing information (exploitation)
versus the collection of new information (exploration). How do the two ex-
treme recruitment mechanisms, trail-based foraging and the honeybee’s dance
language, allow for the discovery of new food sources?

As mentioned earlier, trail-following ants never have a zero probability
of losing a trail, irrespective of the trail resulting in some ants getting lost
even when the trail is at its strongest. Assuming that these ‘lost’ ants are
able to discover new food sources and thus serve as the colony’s explorers or
scouts, this ‘strategy of errors’ (Deneubourg et al. 1983; Jaffe and Deneubourg
1992) allows the colony to fine-tune the number of scouts depending on the
profitability of the food source that has already been exploited. This is because
the weaker the trail (indicating the presence of a mediocre food source), the
more the number of ants that get ‘lost’ and hence become scouts. When the
trail is very strong (indicating that a high-quality food source has been found)
a smaller number of ants will lose the trail, resulting in a smaller number of
scouts.

The regulation of scouts in honeybees similarly assures the correct balance
between the number of individuals allocated to exploration and exploitation.
An unemployed forager (an individual that wants to forage but does not know
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where to forage) will first attempt to locate a dance to follow. If this fails
because the number of dancers is low, she will leave the colony and search
the surroundings, thereby becoming a scout (Beekman et al. 2007). As a
result, the number of scouts is high when the colony has not discovered many
profitable forage sites, as dancing will then be low, whereas the number of
scouts will be low when forage is plentiful and the number of bees performing
recruitment dances high (Seeley 1983; Beekman et al. 2007). This so-called
‘failed follower mechanism’ (Sumpter 2000; Beekman et al. 2007) provides
the colony with the means to rapidly adjust its number of scouts depending
on the amount of information available about profitable forage sites. Even
when the colony is exploiting profitable patches, there may still be other,
undiscovered, profitable sites that are not yet exploited. As soon as there is
a reduction in the number of dances occurring in the colony, the probability
that some unemployed foragers are unable to locate a dance increases, and
the colony therefore sends out some scouts. Such fluctuations in the number
of dances regularly occur in honeybee colonies, even when there is plenty of
forage (Beekman et al. 2004).

2.3 Where to Live?

Amazing as an insect colony’s collective food collection is, even more amazing
is that the same communication mechanisms are often used to achieve a very
different goal: the selection of a new nest. A colony needs to select a new home
under two conditions. Either the whole colony needs to move after the old nest
has been destroyed, or part of the colony requires a new nest site in the case
of reproductive swarming (where the original colony has grown so much that
part of it is sent off with one or more new queens to start a new colony).
This means that colonies of insects need to address questions very similar to
the questions we ask ourselves when changing homes (Franks et al. 2002).
What alternative potential new homes are available? How do their attributes
compare? Has sufficient information been collected or is more needed? House
hunting by social insects is even more piquant, as it is essential for the colony
that the decision be unanimous. Indecisiveness and disagreement are fatal
(Lindauer 1955). House hunting has been studied in detail in two species of
social insect only, in the ant and the honeybee. Both study systems have been
selected for ease with which this process can be studied. The ant Temnothorax
albipennis forms small colonies (often containing about 100 workers) and lives
in thin cracks in rocks (Partridge et al. 1997) and can easily be housed in the
laboratory. By simply destroying their old nest, the ants are forced to select a
new one (Sendova-Franks and Franks 1995). Moreover, because of their small
colony size, it is not that hard to uniquely mark all individuals (and they
don’t sting!), which greatly facilitates the study of their behavior.

Honeybee swarms normally have many more individuals (approximately
15,000 bees (Winston 1987)), but researchers often work with swarms that
contain 4,000 to 5,000 bees (Seeley et al. 1998; Camazine et al. 1999; Seeley
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and Buhrman 1999; Seeley and Buhrman 2001; Seeley 2003; Seeley and Viss-
cher 2004; Beekman et al. 2006). The great benefit of honeybees is that we
can artificially make swarms by simply taking the queen out of the colony and
shaking the 5,000 or so bees needed to produce an experimental swarm. And,
if necessary, we label the bees individually in the same manner as when we
study foraging.

By offering our homeless insects nest sites that differ in quality, we can
carefully study which attributes the ants or bees value in their new home.
At the same time we can get a clear picture of the behavioral repertoire
that underlies collective house hunting. These behaviors can then be used to
construct individual-based models aimed at understanding precisely how the
actions of the individuals result in collective choice.

House Hunting in Honeybees

Tom Seeley was the first to systematically study house hunting in social insects
using the honeybee as his model organism. Seeley started out by determining
what attributes the bees look for when judging the suitability of a potential
new nest site. By working on a tree-less island (this species of honeybee nor-
mally inhabits tree hollows but happily lives in man-made hives when no tree
hollows are available), Seeley and his colleague Buhrman could manipulate
the kind of nest sites the bees could choose from. By manipulating the nest
site’s main attributes, such as content and size of the entrance, they could
determine what constitutes a ‘mediocre’ and a ‘superb’ site from the bees’
point of view. This further allowed them to study how good a bee swarm is
at choosing the best nest site out of several possibilities (Seeley and Buhrman
2001). And, not surprisingly, they are pretty good at it because when offered
an array of five nest boxes, four of which were mediocre because they were
too small (bees like large nest sites with a small nest entrance), in four out of
five trials the bees chose the superb nest site. How do they do it?

As with recruitment to forage sites, bees that have found a nest site that
is considered worthwhile will perform a dance upon returning to the swarm.
By filming the dances of bees returning from both mediocre and superb sites,
Seeley and Buhrman (2001) could study how the dances differed between
the two. What they observed was that bees tune their dance in three ways.
Firstly, bees returning from a superb site dance longer than bees returning
from a mediocre site. Secondly, a dance for a superb site contains more waggle
phases (the part of the dance that encodes the distance to the site). Lastly,
dances for superb sites are ‘livelier’, meaning that the period between two sub-
sequent waggle phases is shorter. Hence, there is a clear difference in dance
behavior between bees returning from mediocre and superb sites, but this is
not different from bees dancing for high and mediocre quality food sources
which leads to most, but not all, bees focusing on the best food source. Dances
for forage will never converge; instead there will always be different sites ad-
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vertised simultaneously. However, a swarm needs to select just one nest site
unanimously and this suggests that dances for nest sites do converge.

Scout bees, those bees that search the environment for suitable new nest
sites, fly out in every direction and return to the swarm with information
about nest sites found. Initially, many dances will take place on the swarm,
advertising all sites that have been judged to be good enough. Within a few
hours, however, many sites are no longer danced for, and just before the swarm
takes to the air to fly to its new home, most, if not all, dances will be for a
single site (Seeley and Buhrman 1999). Such a unanimous decision is reached
without scouts comparing multiple nest sites (Visscher and Camazine 1999)
or potential dance followers selecting dances for the best nest sites. The most
likely reason why the swarm is ultimately able to select one nest site that is
mostly the best is dance attrition. In contrast to the dances for forage, where
bees will keep dancing for a forage site provided it remains profitable, bees
returning from a potential new nest site ultimately cease dancing (Seeley and
Buhrman 2001; Seeley 2003) even when their discovered nest site is of superb
quality.

The process goes like this. A bee that has returned from the best site
possible will perform, say, 100 waggle phases during the first dance that she
performs for that nest site. After she has finished her dance, she returns to the
nest site to confirm that it is still superb. Upon returning to the swarm, she
will advertise her site again, but will now reduce the number of waggle phases
to 80. After this dance she flies off again to her site and the process repeats
itself. This means that after five trips, this bee will not perform a dance upon
her return (as she will have reduced the number of waggle phases after each
return trip), but in the meantime she will have performed protracted and
lively dances for her site. Compare this with a bee that has found a mediocre
site. This bee will perform, say, only 60 waggle phases during her first dance,
40 on her second dance, etc. until she ceases dancing altogether. She not only
dances for a shorter period, but the number of dances performed for her site
is also less than the number of dances performed by the bee that found the
superb site. Hence, the ‘length of advertising’ differs significantly between the
mediocre and superb site and, as a result, more bees will be recruited to the
superb site than to the mediocre site, and those bees, provided they also rate
the site as superb, will perform lengthy dances and recruit more bees. It has
been suggested, based on a mathematical model, that this dance attrition is
crucial to the swarm’s ability to decide on one site (Myerscough 2003), but
this assumption awaits empirical testing.

Even though many behaviors of the bees involved in the swarm’s decision-
making process have been described in great detail (for a nice overview see
Visscher 2007), without the use of a mathematical or simulation model it is
not immediately obvious how individual behavior is translated into collective
behavior and the swarm’s ability to choose the best nest site. Understanding
in more detail the swarm’s decision-making process led one of us, Madeleine
Beekman, together with two computer scientists, Stefan Janson and Martin
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Middendorf, to construct an individual-based model of a honeybee swarm
choosing a new home (Janson et al. 2007). Not only did we want to construct
a model that would behave in a realistic way, we wanted also to use that
model to get an idea about two aspects in particular which are hard to study
using real honeybee swarms: how a swarm regulates the number of individuals
that explore the surroundings for nest sites (as opposed to recruiting individ-
uals to nest sites that have already been discovered), and how scouts search
their environment. Both questions address the trade-off between using exist-
ing information (exploitation) and acquiring new information (exploration)
and how this trade-off affects the quality of the decision made at the level of
the swarm.

We assumed that the bees would use the same behaviors and decision rules
both when foraging and when deciding on a new home. We therefore started by
applying the same exploration decision rule as had been applied in the context
of foraging: an individual bee that has not yet decided where to search will
always start by attempting to locate a dance to follow. The longer it takes to
find a dance, the more likely this bee is to fly off and search independently
(explore). This simple decision rule gave the following result (see Fig. 3): when
the nest site known to the swarm is only of mediocre quality, not many bees
will dance for that nest site and many bees will search independently because
they have a low chance of finding a dance to follow; the reverse is true when a
superb nest site has been found, as now most returning bees will dance for this
nest site (note that we included individual variation in our bees such that an
individual has a probability of dancing that increases with increasing quality
of nest site). Clearly, applying the failed follower mechanism also works very
well in house hunting and ensures an elegant balance between the number of
bees recruiting to a known nest site and the need to search the environment
for a better nest site.

All experimental work done so far on nest site selection in honeybee swarms
used nest sites which were located at equal distance from the swarm, a situ-
ation which is highly unlikely under natural conditions where nest sites are
present at all distances. Imagine a situation in which the swarm has discovered
a nest site nearby, but this nest site is only of very mediocre quality. We now
know that under this condition the swarm allows for more bees to explore the
surroundings in case a better nest site is found; but how should the swarm
distribute its scouts over the environment to allow the discovery of such a
further site in the first place? The great benefit of using models is that one
can manipulate the experiment. Hence, in our simulation model we were able
to control which nest site was discovered first by the swarm by simply sending
the first scout to that particular nest site. At the same time we could give our
scouts different ‘search rules’ to investigate how these rules affect the swarm’s
decision. The search rules we used were the following: scouts were sent out
such that all nest sites irrespective of their distance were equally likely to be
discovered (uniform Pu=1/250); the chance of discovery decreased with in-
creasing distance from the swarm (distance Pd=1/distance); sites nearby had
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Fig. 3. Average number of bees scouting for a nest site and average number of bees
assessing a nest site (e.g., the number of bees that already know about the location
of a potential new nest site) when nest sites of different quality (70: good site, 50:
mediocre site, 45: poor site) were offered to the swarm. The vertical bars indicate
the standard variation (50 runs per experiment). (Fig. 6 in Janson et al. (2007).)

a much higher probability of being discovered than sites present further from
the swarm (distance squared Ps =250/distance2). Our results showed that the
best search strategy from the swarm’s point of view would be to focus on
nearby sites without ignoring possible sites further away. Hence, most scouts
are expected to search in the vicinity of the swarm, whereas some are likely
to fly out further. This prediction can relatively easily be tested using real
honeybee swarms.

Ants Moving House

The ant Temnothorax albipennis is rather different from the honeybee. Not
only are its colonies much smaller, decision making seems much more depen-
dent on individual decisions. For example, when offered a choice between two
nest sites, about half of the ants directly compare the quality of those sites
and can therefore make an informed choice (Mallon et al. 2001). At the same
time, however, the other half does not directly compare the different options
but these poorly informed ants still contribute to the colony’s overall decision.
How does their decision-making mechanism work?

Individual behavior of T. albipennis during nest site selection has been
described in great detail (Mallon et al. 2001; Pratt et al. 2002). T. albipennis
does not use pheromone trails to recruit nest mates but instead relies on
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tandem running, where one individual guides a second individual by staying
in close contact, and social carrying, where the recruiter simply picks up
another ant and carries it across to the new nest site (the queen is always
carried!). In the beginning of the process, only tandem runs are performed by
scouts that have discovered a potential new nest. Similarly to the honeybee, T.
albipennis scouts know what they want in a new home: it should be spacious
and the entrance should be relatively small so that it can easily be defended.
The probability that a scout will initiate tandem recruitment to the site that
it has just found depends on the quality of that site. Moreover, assessment
duration (the time spent inspecting the potential new nest) varies inversely
with the quality of the site. Hence, the better the scout judges that site to be,
the faster it will start recruiting. By leading a single individual towards the
nest site discovered, the scout basically teaches the recruit how to get to the
new nest site so that this recruit, if it decides that the nest site is indeed of
good quality, can lead other ants to that site. The result is a build-up of ants
at good quality sites, whereas sites of poor quality will not attract many ants.

When the number of ants present at a particular nest site reaches a certain
level, the quorum threshold, no more tandem recruitment takes place but
instead ants still present in the old nest are picked up and simply carried to
the new nest site. Brood items (eggs, larvae and pupae) will also be moved
in this way. Why does T. albipennis have two recruitment methods, one slow
(tandem runs) and one fast (social carrying)?

During the period in which tandem recruitment takes place, the quality
of the nest site discovered is assessed independently by each ant that either
discovered that site via scouting or was led to it via tandem recruitment. This
ensures that the ‘opinions’ of many ants about the site’s quality are pooled,
thereby increasing the likelihood that that site is indeed of sufficient quality.
At the same time, the slow build-up of ants at the discovered site allows
for a better site to be discovered, as recruitment to this site will be faster
and hence the number of ants will rapidly increase. Because of the different
recruitment to sites depending on their quality, the quorum will be reached
faster at the better site, after which social carrying will be initiated. This last
phase enables the colony to move into the chosen site rapidly (remember that
these ants move when their old nest site has been destroyed).

The above is a verbal description of the ants’ collective choice based on
observations of their individual behaviors. But can this sequence of behaviors
really account for the ants’ collective choice? To answer this question Stephen
Pratt and his colleagues (Pratt et al. 2005) incorporated everything they knew
about individual behavior into an agent-based model of collective nest choice.
They then used this model to simulate emigrations and compared the out-
comes of these in silico emigrations with those performed by real ant colonies.
When the simulated ants were presented with a single site, the time course of
the emigration generally conformed to experimental data. More interesting,
however, was what the simulated ants did when confronted with two poten-
tial sites that differed in quality. The model predicted that about 10% of each



Biological Foundations of Swarm Intelligence 19

colony should typically be carried to the site of lower quality by the time the
old nest is completely empty, a result of many individuals basing their deci-
sion on information on one nest site only. This prediction was confirmed by
using real colonies and offering them the same choice as the in silico ants. The
agent-based model therefore provides strong support for the interpretation of
the ants’ individual behavior.

3 Moving in Groups

In many animal species, individuals move in groups as they perform seasonal
migrations, travel to food sources and return to safe havens, often over consid-
erable distances (Boinski and Garber 2000; Krause and Ruxton 2002; Couzin
and Krause 2003). The movement of these groups is commonly self-organized,
arising from local interactions between individuals rather than from a hier-
archical command center. Self-organized group movement is not restricted to
groups of relatively ‘simple’ creatures such as insect swarms or schools of fish,
but may even include ‘intelligent’ species like us. One of the most disastrous
examples of collective human group movement is crowd stampede induced by
panic, often leading to fatalities as people are crushed or trampled (Helbing
et al. 2000).

There are two extreme ways in which groups can ‘decide’ on a direction of
movement. Either all individuals within the group contribute to a consensus,
or else relatively few individuals (for convenience we will call these ‘leaders’)
have information about the group’s travel destination and guide the unin-
formed majority. Thus, in some species, all individuals within a group share
a genetically determined propensity to travel in a certain direction (Berthold
and Querner 1981; Berthold et al. 1992) or all are involved in choosing a
particular travel direction (Neill 1979; Grünbaum 1998). In contrast, a few in-
formed individuals within a fish school can determine the foraging movements
of the group and can steer a group towards a target (Reebs 2000; Swaney et
al. 2001). Similarly, very few individuals (approx. 5%) within a honeybee
swarm can guide the group to a new nest site (Seeley et al. 1979).

When leaders are present, the question arises as to how these informed
individuals transfer directional information to the uninformed majority. Sim-
ilarly, in the absence of leaders how is a consensus reached about travel di-
rection? Such questions are almost impossible to address without having first
developed a theoretical framework that explores possible mechanisms.

Recently, two theoretical studies have addressed the issue of information
transfer from informed to uninformed group members. Stefan Janson, Martin
Middendorf and Madeleine Beekman (2005) modeled a situation in which
the informed individuals make their presence known by moving at a higher
speed than the average group member in the direction of travel. Guidance
of the group is achieved by uninformed individuals aligning their direction
of movement with that of their neighbors. Because the informed individuals
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initially move faster, they have a larger influence on the directional movement
of the uninformed individuals, thereby steering the group.

A second model by Iain Couzin and colleagues (2005) shows that the move-
ment of a group can be guided by a few informed individuals without these
individuals providing explicit guidance signals and even without any individ-
ual in the group ‘knowing’ which individuals possess information about travel
direction. Only the informed members of the group have a preferred direc-
tion, and it is their tendency to go in this direction that steers the group. The
main difference between the two models lies in the presence or absence of cues
or signals from the informed individuals to the uninformed majority. Janson
et al.’s (2005) leaders clearly make their presence known, whereas Couzin et
al.’s (2005) model suggests that leadership can arise simply as a function of
information difference between informed and uninformed individuals, without
the uninformed individuals being able to tell which ones have more informa-
tion. It seems likely that the exact guidance mechanism is species-dependent.
When the group needs to move fast, for example a swarm of honeybees that
cannot run the risk of losing its queen during flight, the presence of leaders
that clearly signal their presence might be essential, as the group otherwise
takes a long time to start moving into the preferred direction. However, when
the speed of movement is less important than group cohesion, for example
because being in a group reduces the chance of predation, leaders do not need
to signal their presence.

If there are no leaders, the essential first step before a group can start
to move cohesively is some level of consensus among the individuals in their
alignment. How is this achieved when there are no leaders? Most likely there
are a minimum number of individuals that need to be aligned in the same
direction before the group can start to move in a particular direction with-
out breaking up. If the number of equally aligned individuals is below this
threshold, the group does not move cohesively. As soon as this threshold is
exceeded, coordinated movement is achieved. Such a non-linear transition at
a threshold is known in theoretical physics and mathematics as a phase tran-
sition. Interestingly, we have recently discovered, for the first time, similar
transitions in biological systems (Beekman et al. 2001). Theoretical physicists
have developed a suite of models, termed self-propelled particle (SPP) models,
which attempt to capture phase transitions in collective behavior (Vicsek et
al. 1995). SPP models aim to explain the intrinsic dynamics of large groups
of individuals. Later we shall show how this theoretical framework can be
applied to the collective movement of locusts. But first we will describe some
experimental results on group movement in honeybee swarms, locusts and
Mormon crickets.

3.1 Honeybees on the Move

Deciding where to live is only one part of a honeybee swarm’s problem. The
second problem arises once that decision has been made: how does the small
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number of informed bees (about 5%) convey directional information to the
majority of the uninformed bees in such a way that the swarm moves in uni-
son? In the previous section we already described two theoretical possibilities:
either leaders signal their presence to the uninformed majority, or they do not
but simply move in their preferred direction. In fact, the model by Janson
and colleagues was inspired by a suggestion made in the early 1950s by Mar-
tin Lindauer (1955). Lindauer observed in airborne swarms that some bees
fly through the swarm cloud at high speed and in the correct travel direc-
tion, seemingly ‘pointing’ the direction to the new nest site. He suggested
that these fast-flying bees, later named ‘streakers’ (Beekman et al. 2006), are
the informed individuals or scouts. Lindauer got this idea while working in
war-ravaged Munich where he used to run with his honeybee swarms in an
attempt to find out where they were going. Like every scientist who takes
himself or herself seriously, at least at that time, Lindauer used to wear a
white lab coat, even when he was out in the field with the bees. One of his
field sites was near a mental hospital and rumor has it that one day he was
mistaken for an escaped mentally ill patient (Tom Seeley, personal communi-
cation). Luckily, Lindauer ran faster than the guards who tried to catch him,
which gives one an indication of how fast a swarm of bees flies!

An alternative to Lindauer’s hypothesis (which we will refer to as the
‘vision’ hypothesis) is the olfaction hypothesis of Avitabile et al. (1975). They
proposed that the scouts provide guidance by releasing assembly pheromone
from their Nasanov glands (a gland found between the last two tergites of
the bee’s abdomen) on one side of the swarm cloud, thereby creating an odor
gradient that can guide the other bees in the swarm. Until very recently
neither the vision hypothesis nor the olfaction hypothesis had been tested
empirically, though other investigators have confirmed Lindauer’s report that
there are streakers in flying swarms (Seeley et al. 1979; Dyer 2000).

Madeleine Beekman, Rob Fathke and Tom Seeley (2006) decided that it
was time to shed some light on this issue. In that study they did two things.
They studied in detail the flights of normal honeybee swarms (containing
approximately 15,000 bees) and smaller (4,000–5,000 bees) swarms in which
the bee’s Nasanov gland was sealed shut by applying paint to every single bee
in the swarm. This meant that sealed-bee swarms could not emit the Nasanov
pheromone (they had to apply paint to all bees in the swarm because they
had no means of knowing which bees would be the scouts). By using a ‘bait-
nest site’ that they made extremely attractive to a bee swarm, they could
be almost certain that their swarms would select that nest site. This allowed
them to follow the swarm (as Lindauer did through Munich, though they used
an open field), measure its speed and the time it took the swarm to settle in its
new home. Using this procedure and several sealed-bee swarms allowed them
to show that even if every single bee in the swarm was unable to produce
the Nasanov pheromone, the swarm was still able to fly more or less directly
towards the new nest site. From this they concluded that scouts do not use
pheromones to guide the swarm.
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Proving the vision hypothesis was more difficult. They decided that a first
step would be to show that there is variation in flight speed and flight direction
among the individual bees within a flying swarm by taking photographs of a
large swarm during its flight to the bait hive such that individual bees appear
as small, dark streaks on a light background. The faster the flight speed of a
bee, the longer the streak it produced using this technique (provided the bee
flew in the plane of vision). Each photograph was analyzed by projecting it
onto a white surface to create an enlarged image. They then measured the
length (in mm) and the angle (in degrees, relative to horizontal) of each dark
streak that was in focus in the enlarged image. Because a size reference was
present in each photograph, and because each photograph recorded the bees’
movements during a known time interval (1/30 s), they were able to calculate
for each photograph the conversion factor between streak length and flight
speed. Using this procedure they could quantify what they saw while running
with the swarms: that a portion of the bees fly much faster in the direction of
travel while the majority of the bees seem to fly much slower and with curved
flight paths. Moreover, the fast-flying bees, the streakers, appeared to be most
common in the upper region of a swarm. For humans, and probably also for
bees, streakers are much more easily seen against the bright sky rather than
the dark ground or vegetation, so by flying above most of the bees in a swarm,
the streakers may be facilitating the transfer of their direction information to
the other bees. Future work should focus on determining if it is indeed the
streakers that are the scouts, those with information about the location of the
new nest site.

3.2 Locusts

To this point we have considered examples of self-organization and swarm
intelligence in highly structured social groups, in which there is a distinction
between reproductive individuals and more or less sterile workers and pro-
nounced division of labor among workers. But not all cohesively behaving
animal groups are so structured. Some consist of individuals that are essen-
tially all the same. And, as we shall see in the next section, the forces that
bind and propel such groups may be very sinister indeed.

Of the approximately 13,000 described species of grasshopper that exist
across the world, 20 or so are particularly notorious. For much of the time
they are just like any other harmless grasshopper — but, occasionally, and
catastrophically, they change and instead of living solitary lives, produce mas-
sive, migrating aggregations. As juveniles they form marching bands that may
extend for kilometers. Once they become winged adults, they take to the air
as migrating swarms that may be hundreds of square kilometers in area and
travel hundreds of kilometers each day. More than one fifth of the earth’s land
surface is at risk from such plagues and the livelihood of one in ten people on
the planet may be affected. These grasshoppers are called locusts.
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Fig. 4. The two extreme forms of juvenile desert locusts. When reared in a crowd,
locusts develop into the gregarious phase, whereas the same individual if reared
alone would develop into the solitarious phase (photo by S. Simpson).

Phase Polyphenism: The Defining Feature of Locust Biology

Unlike other grasshoppers, locusts express an extreme form of density de-
pendent phenotypic plasticity, known as ‘phase polyphenism’. Individuals
reared under low population densities (the harmless, non-migratory ‘solitar-
ious’ phase) differ markedly in behavior, physiology, color and morphology
from locusts reared under crowded conditions (the swarm-forming, migratory
‘gregarious’ phase) (Pener and Yerushalmi 1998; Simpson et al. 1999; Simp-
son and Sword 2007). In some species, such as the infamous migratory locust
of Africa, Asia and Australia (Locusta migratoria), the phenotypic differences
are so extreme that the two phases were once considered to be separate species
(Uvarov 1921; Fig. 4). In fact, not only are the two phases not different species,
they are not even different genotypes: the same animal can develop into the
solitarious or the gregarious phase depending on its experience of crowding.
The genetic instructions for producing the two phases are, therefore, packaged
within a single genome, with expression of one or other gene set depending
on cues associated with crowding.

At the heart of swarm formation and migration is the shift from the shy,
cryptic behavior of solitarious phase locusts, which are relatively sedentary
and avoid one another, to the highly active behavior and tendency to aggregate
typical of gregarious phase insects. In the African desert locust, Schistocerca
gregaria, this behavioral shift occurs after just one hour of crowding (Simpson
et al. 1999). In recent years progress has been made towards understanding the
physiological and neural mechanisms controlling behavioral phase change in
locusts. In the desert locust the key stimulus evoking behavioral gregarization
is stimulation of touch-sensitive receptors on the hind (jumping) legs. These
receptors project via identified neural pathways to the central nervous system
and cause release of a suite of neuro-modulators, among which serotonin initi-
ates phase transition through its action on neural circuits controlling behavior
(Simpson et al. 2001; Rogers et al. 2003, 2004; Anstey et al., unpublished).
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Phase characteristics, including behavior, not only change within the life of
an individual, they also accumulate epigenetically across generations (Simpson
et al. 1999; Simpson and Miller 2007). Solitarious females produce hatchlings
that are behaviorally gregarized to an extent that reflects the degree and
recency of maternal crowding. If crowded for the first time at the time of
laying her eggs, the mother will produce fully gregariously behaving offspring.
In contrast, if a gregarious female finds herself alone when laying eggs, she
will produce partially behaviorally solitarized young (Islam et al. 1994a,b;
Bouäıchi et al. 1995). The gregarizing effect is mediated by a chemical which
the mother produces in her reproductive accessory glands and adds to the
egg foam in which she lays her eggs in the soil (McCaffery et al. 1998). In
effect, female locusts use their own experience of being crowded to predict the
population density that their young will experience upon emerging from the
egg and predispose them to behave appropriately. As a result phase changes
accumulate across generations.

Group Formation

Behavioral phase change within individuals sets up a positive feedback loop,
which under appropriate environmental conditions promotes the rapid tran-
sition of a population from the solitarious to the gregarious phase. If they
can, solitarious locusts will avoid each other. However, if the environment
forces them to come together, close contact between individuals will rapidly
induce the switch from avoidance to active aggregation, which will in turn
promote further gregarization and lead to formation of groups. Given that
gregarious phase locusts are migratory and move together, either as marching
bands of juveniles or swarms of winged adults, there is the likelihood that local
groups coalesce, ultimately seeding the formation of massive regional swarms.
In contrast, when previously aggregated individuals become separated, they
will begin to solitarize, hence reducing their tendency to aggregate and so
promoting further solitarization. If the habitat tends to keep locusts apart,
then this will ultimately lead to resolitarization of a gregarious population. In-
terestingly, the switch from solitarious to gregarious occurs more rapidly than
the reverse transition (Roessingh and Simpson 1994), indicating a hysteresis
effect.

Small-scale features of resource distribution determine the extent to which
phase change occurs in a local population of desert locusts. Clumping of re-
sources such as food plants, roosting sites, and areas of favorable microclimate
encourages solitarious locusts to come together and as a consequence to gre-
garize and aggregate (Bouäıchi et al. 1996). The degree of clumping of food
plants in the parental environment in turn influences the phase state of the
offspring (Despland and Simpson 2000a).

The relationships between resource distribution, resource abundance, and
locust population size have been explored using individual-based computer
simulations, parameterized using experimental data from locusts (Collett et
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al. 1998) . The extent of gregarization within a simulated population increases
with rising locust population density and increasing clumping of food re-
sources. Critical zones at which solitarious populations gregarize precipitously
appear in the model across particular combinations of resource abundance,
resource distribution and population size. Subsequent experimental data sup-
port the predictions from the simulation model (Despland et al. 2000).

The spatial pattern of food distribution interacts with the nutritional qual-
ity of foods to determine the spread of phase change within local populations
(Despland and Simpson 2000b). Nutritional effects are mediated through dif-
ferences in locust movement (Simpson and Raubenheimer 2000). Insects pro-
vided with poor quality food patches are highly active and are likely to contact
one another and gregarize even when food patches are not clumped. In con-
trast, locusts with nutritionally optimal food patches do not move far after
feeding, resulting in limited physical interactions between individuals, even
when food patches are highly clumped.

It is clear that small-scale features of the habitat such as resource abun-
dance, quality and distribution either promote or impede phase change within
local populations. The same pattern seems to apply at intermediate scales of
a small number of kilometers (Babah and Sword, 2004) but at higher spatial
scales the relationship between vegetation distribution and desert locust out-
breaks changes as different ecological processes come into play. At the scale of
individual plants, a fragmented habitat with multiple dispersed patches en-
courages solitarization, whereas at the landscape scale the pattern is reversed:
habitat fragmentation brings migrating locusts together and encourages out-
breaks (Despland et al. 2004).

Understanding patterns of collective movement across local to landscape
scales requires answering two questions: what causes bands of marching hop-
pers (the juvenile stages) and flying adults to remain as cohesive groups, and
what causes them to move synchronously and collectively between patches at
different scales?

Collective Movement

Locust aggregations will build into major outbreaks only if locally gregarized
populations remain together and move collectively into neighboring areas of
habitat, where they can recruit further locusts to the growing band. Unless
such cohesive movement occurs, local aggregations will disband and individ-
uals will return to the solitarious phase.

Within marching bands of juvenile locusts, individuals tend to synchronize
and align their directions of travel with those of near neighbors (Despland and
Simpson 2006). It had been shown in the laboratory that marching begins only
at high locust densities (Ellis, 1951), but these experiments did not measure
how and why alignment increases with density to the point that an aggregation
of locusts suddenly commences collective marching.
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Fig. 5. An image from the Mexican hat marching arena and tracking software used
in Buhl et al.’s (2006) study of collective marching in gregarious locusts. For a movie
see http://www.sciencemag.org/cgi/content/full/312/5778/1402/DC1.

This problem has recently been studied by Jerome Buhl and colleagues
(2006) by modeling locusts as self-propelled particles (SPP), each ‘particle’
adjusting its speed and/or direction in response to near neighbors. The model
developed by Vicsek et al. (1995) was used because of its small number of un-
derlying assumptions and the strength of the universal features it predicts. A
central prediction from the model is that as the density of animals in the group
increases, a rapid transition occurs from disordered movement of individuals
within the group to highly aligned collective motion. Since SPP models un-
derlie many theoretical predictions about how groups form complex patterns,
avoid predators, forage, and make decisions, confirming such a transition for
real animals has fundamental implications for understanding all aspects of
collective motion. It is also particularly important in the case of locusts as it
could explain the sudden appearance of mobile swarms.

Buhl et al.’s experiments involved studying marching in the laboratory in a
ring-shaped arena, rather like a Mexican hat in shape, with a central dome to
restrict optical flow in the direction opposite to that of individual motion. For
data analysis, Iain Couzin developed an automated digital tracking system,
allowing the simultaneous analysis of group-level and individual-level proper-
ties, which is technically extremely challenging but essential for discovering
the link between these levels of organization (Fig. 5).
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Juvenile locusts readily formed highly coordinated marching bands under
laboratory conditions when placed in the Mexican hat arena. Individuals se-
lected collectively either a clockwise or counter-clockwise direction of travel
(the choice of which was random) and maintained this for extended periods.
Experiments were conducted in which the numbers of locusts in the arena
ranged from 5 to 120 insects (densities of 13 to 295 m2). The locusts’ motion
was recorded for eight hours and the resulting data were processed using the
tracking software to compute the position and orientation of each locust.

Coordinated marching behavior depended strongly on locust density (Figs.
6, 7). At low densities (2 to 7 locusts in the arena, equating to 5 to 17 locusts
per m2) there was a low incidence of alignment among individuals. In trials
where alignment did occur it did so only sporadically and after long initial
periods of disordered motion. Intermediate densities (10 to 25 locusts; 25 to
62 per m2) were characterized by long periods of collective marching with
rapid, spontaneous reversals in rotational direction. At densities higher than
74 per m2 (30 or more locusts in the arena) spontaneous changes in direction
did not occur, with the locusts quickly adopting and maintaining a common
rotational direction.

Hence Buhl et al.’s experiments confirmed the theoretical prediction from
the SPP model of a rapid transition from disordered to ordered movement
(Figs. 6, 7) and identified a critical density for the onset of coordinated
marching in juvenile locusts. In the field, small increases in density past this
threshold would be predicted to result in a sudden transition to a highly
unpredictable collective motion, making control measures difficult to imple-
ment. The experiments also demonstrated a dynamic instability in motion at
densities typical of locusts in the field, whereby groups can switch direction
without external perturbation, potentially facilitating rapid transfer of direc-
tional information. Buhl et al.’s data and model also suggest that predicting
the motion of very high densities is easier than predicting that of intermediate
densities.

Of course, it cannot be assumed that all of the collective behavior seen
in laboratory experiments translates directly to that observed in the field.
However, the wealth of mathematical and simulation-based understanding of
SPP models provides tools for performing such scaling. In combination with
the detailed understanding of the role of the environment in behavioral phase
change, as discussed above, SPP models could now form the basis of prediction
to improve control of locust outbreaks.

3.3 Mormon Crickets

As we have noted, superficial similarities in group-level characteristics of bio-
logical systems may mask subtle, but important, underlying differences among
them. This scenario rings true for mass-migrating Mormon crickets (Anabrus
simplex). Just like locusts, Mormon crickets form cohesive migratory bands
during outbreak periods that march en masse across the landscape (Fig. 8a).
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Fig. 6. Similarity between the self-propelled particles model of Vicsek et al. (1995)
and experimental data as density of locusts in the arena was manipulated: (A) 7,
(B) 20 and (C) 60 individuals in the arena (from Buhl et al. 2006). See text for
explanation.

These bands can be huge, spanning over ten kilometers in length, several in
width, containing dozens of insects per square meter, and capable of traveling
up to 2.0 km per day (Cowan 1929; Lorch et al. 2005). Mormon cricket bands
can cause serious damage when they enter crop systems and usually elicit
prompt chemical control measures when they appear.

Although studied far less than locusts, laboratory and field analyses of
Mormon cricket migratory behavior have provided important insights into the
mechanisms underlying group formation and subsequent collective movement
patterns. In addition, Mormon crickets have served as a key study system
in the development of the nascent field of insect radiotelemetry in which the
movement patterns of individual insects can be tracked across the landscape
using small radiotransmitters. The use of this technology has enabled the
study of landscape-scale collective movement to move beyond descriptions of
observed patterns and into the realm of empirical hypothesis testing using
manipulative field experiments.

Despite their name, Mormon crickets are not true crickets, but rather are
classified as katydids or bush-crickets. They are flightless throughout their
lives and possess small vestigial wings used by males for sound production
and mate attraction (Gwynne 2001). As a result, they are incapable of form-
ing flying swarms and travel on the ground as both juveniles and adults.
Their religious name originates from a now legendary incident that occurred
in the spring of 1848 involving the first Mormon settlers to arrive in the Great
Salt Lake Valley in the western US. After surviving a difficult westward jour-
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Fig. 7. The relation between the average number of moving locusts and the mean
total time spent in the aligned state (A and C) and the mean number of changes
in the alignment state (B and D) are displayed on a semi-log scale. Error bars,
standard deviation. The ‘ordered phase’ refers to periods where the insects exhibited
high alignment (> 0.3), and thus were moving collectively in one direction (either
clockwise or anti-clockwise). From (Buhl et al. 2006).

ney and ensuing winter, the pioneers were enjoying what appeared to be a
bountiful first spring in their newly established homeland. This serenity was
shattered when their fields, planted with over 5,000 acres of wheat, corn and
vegetables were invaded by marching hoards of large black ‘crickets’ that set
upon their standing young crops (Hartley 1970). The devout surely interpreted
this assault as an act of God analogous to the well-known Biblical plagues of
Old World locusts. The settlers’ attempts to battle the crickets using sticks,
shovels, brooms, fire and trenches were futile, but their prayers for relief were
answered by the arrival of seagulls that flew in from the Great Salt Lake and
began to devour the marauding crickets. The gulls reportedly gorged them-
selves on crickets in the fields, often to the point of regurgitation, after which
they would return to feast again (Hartley 1970). The gulls were credited with
saving the remaining crops, and by extension the first settlers; a multi-trophic
level interaction that resulted in the California Sea Gull being selected as the
state bird of Utah. The Miracle of the Gulls was also commemorated by the
erection of a monument at the headquarters of the Mormon Church in Salt
Lake City, one of the few monuments, if not the only one, in the world dedi-
cated to an insect predator (Gwynne, 2001).
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Phase Polyphenism and Migratory Band Formation

Until recently, it had been widely assumed that Mormon crickets express
density-dependent phase polyphenism similar to that known to occur in lo-
custs. This assumption was due in large part to the similarities between migra-
tory bands of locusts and those of Mormon crickets. The possibility of phase
polyphenism in Mormon crickets was further supported by observed pheno-
typic differences in migratory behavior, coloration and body size between in-
dividuals from low-density, non-outbreak populations and their counterparts
in high-density, band-forming populations (MacVean, 1987; Gwynne, 2001;
Lorch and Gwynne, 2000). MacVean (1987) noted that the formation of mi-
gratory bands in the Mormon cricket “bears a striking resemblance to phase
transition in the African plague locusts,” and Cowan (1990) described the
Mormon cricket as having gregarious and solitarious phases similar to locusts.
Mormon crickets and locusts also share phase-related terminology in the scien-
tific literature with Mormon crickets in non-outbreak populations, commonly
referred to as inactive solitary forms (i.e. solitarious phase), whereas those in
band-forming populations are referred to as gregarious forms (e.g. Wakeland
1959; MacVean 1987, 1990; Lorch and Gwynne 2000; Gwynne 2001; Bailey et
al. 2005).

Two lines of recent evidence suggest that the expression density-dependent
phase polyphenism in Mormon crickets plays little if any role in either the
initial formation of migratory bands or the observed phenotypic differences
between insects from high-density band-forming and low-density non-band-
forming populations. Sword (2005) failed to find an endogenous effect of rear-
ing density on Mormon cricket movement behavior in the lab, but rather
demonstrated that individual movement was induced simply by the short-
term presence of other nearby conspecifics. Although the lack of a behavioral
phase change does not rule out the possibility of density-dependent changes in
other traits, a recent phylogeographic analysis of genetic population structure
suggests considerable divergence between the migratory and non-migratory
forms (Bailey et al., 2005). Thus, the differences between crickets in migratory
and non-migratory populations could primarily be due to genetic differences
rather than the expression of phase polyphenism mediated by differences in
population density.

Taken together, these studies strongly suggest, in contrast to the case
with locusts, that the expression of phase polyphenism is not involved in the
formation of Mormon cricket migratory bands. In other words, the expression
phase polyphenism in not a prerequisite for migratory band formation.

Collective Movement

The initial formation of migratory bands in Mormon crickets and locusts ap-
pears to have convergently evolved via different underlying behavioral mech-
anisms. Is the same true for the mechanisms governing patterns of collective
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movement once these groups have formed? Are there general rules applicable
to the movement patterns of both Mormon crickets and locust bands (not to
mention other organisms), or do these differ as well? The answers to these
questions have important implications for the broader understanding of col-
lective animal movement as well as considerable practical implications for the
development of predictive movement models that can aid in the management
of these and other migratory pests.

Given that the frequency of contact among individuals will increase with
local population density, the finding that Mormon cricket movement is induced
by immediate behavioral interactions among nearby individuals predicts that
there should be some threshold population density above which mass move-
ment is induced (Sword 2005). Although this remains to be demonstrated in
Mormon crickets, the recent application of SPP models by Buhl et al. (2006)
to explain the induction of mass movement in locusts with increasing local
density stands as a promising general framework to explain the onset of mass
movement in Mormon cricket bands as well. Furthermore, as we shall discuss
in detail later, understanding how individual insects contend with the ecolog-
ical costs and benefits of living in a group has provided considerable insight
into the general mechanisms that may drive migratory band movement.

Radiotelemetry is an extremely valuable tool available to biologists for
tracking the movement patterns of individual animals in the wild. The ap-
proach has traditionally been limited to larger vertebrates capable of carrying
the extra weight of a radiotransmitter. However, technological advances have
reduced the size of transmitters such that they can be used to track the move-
ments of individual insects on the ground (e.g. Lorch and Gwynne 2000; Lorch
et al. 2005) (Fig. 8b) as well as in flight (Wikelski et al., 2006). Lorch and
Gwynne (2000) first demonstrated the utility of small radiotransmitters to
track individual Mormon crickets. Their study was followed by a similar, but
much more rigorous analysis by Lorch et al. (2005) who compared the indi-
vidual movement patterns of insects from several different band-forming and
non-band-forming populations. These studies confirmed that Mormon crickets
in migratory bands cover much greater distances (up to 2 km/day) and tend
to move collectively in the same direction relative to insects from low-density,
non-band-forming populations (Fig. 8c, d).

In addition to consistent group directionality within as well as across
days, migratory bands also exhibit group-level turns in which similar direc-
tion changes are made by individuals regardless of their position in the band
(Lorch et al. 2005). Two possible explanations for these synchronous turns are
that either (i) group movement direction is determined by orientation towards
some landscape-scale environmental cue such as wind direction that can be
detected and responded to by all group members, or (ii) they are similar to
turns in bird flocks or fish schools in which individuals adjust their direction
in response to the movement of near neighbors and these turns are propa-
gated through the group like a wave (Couzin and Krause 2003). Although the
Lorch et al. (2005) experiment was not designed to examine the effect of wind
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Fig. 8. Collective movement in Mormon cricket migratory bands. (a) A large migra-
tory band crossing a dirt road in northeastern Utah, USA (photo by G. Sword). (b) A
female Mormon cricket affixed with a small radiotransmitter (photo by D. Gwynne).
(c) Example of individual movement patterns by radiotracked Mormon crickets in
a high-density, migratory-band-forming population. Each line represents a single
individual and each line segment depicts one day of movement. (d) Examples of ra-
diotracked Mormon cricket movement patterns in a low-density, non-band-forming
population. Note the differences in group directionality and scale of movement be-
tween the band-forming and non-band-forming populations. Radiotracking examples
are from Lorch et al. (2005).

direction on migratory band movement, local wind direction data collected
concurrently with the radiotracking data hinted that wind directions early in
the day might correlate with migratory band directions. However, no effect
whatsoever of wind direction on the movement of individuals within migra-
tory bands was found in a follow-up study specifically designed to test the
wind direction hypothesis. Migratory bands simultaneously tracked at three
nearby sites in the same vicinity were found to travel in distinctly different
directions despite experiencing very similar wind directions and other weather
conditions (Sword et al., unpublished).

So what cues determine the direction in which a migratory band will move?
One possible answer provided by simulation models of collective animal move-
ment patterns is that nothing is responsible. A variety of movement models
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in which individuals modify their direction and movement rate in response
to others have shown that group directionality can arise from inter-individual
interactions as a result of self-organization (Krause and Ruxton 2002; Couzin
and Krause 2003). The hypothesis that Mormon cricket migratory band move-
ment direction and distance are collectively determined was tested by conduct-
ing a manipulative transplant experiment in the field as originally described in
Sword et al. (2005). Insects traveling in naturally occurring migratory bands
were captured and radiotracked. Half of these insects were released back into
the band while the other half were transported and released at a nearby site
where bands had previously been, but were absent at the time. The result-
ing differences in movement patterns between the crickets released into the
migratory band versus those that were isolated from the band were dramatic
and closely resembled the previously documented differences between crick-
ets from band-forming versus non-band-forming populations shown in Figs. 8c
and d. Insects isolated from the band moved shorter distances, and were much
less directional as a group relative to the insects released back into the band
(Sword et al., unpublished). These findings quite clearly show that the dis-
tance and direction traveled by insects in a migratory band are group-level
properties that differ considerably from the movement patterns of individuals
when they are removed from the social context of the band.

A Forced March Driven by Cannibalism

Mormon crickets provide a unique model system in which understanding the
costs and benefits of migratory band formation has provided a unifying frame-
work that explains both how and why inter-individual interactions can lead
to landscape-scale mass movement. The evolution and maintenance of mi-
gratory band formation in insects necessarily requires the benefits of such a
strategy to outweigh its costs in terms of individual survival and reproduction.
The radiotelemetry-based transplant study of Sword et al. (2005) mentioned
above was originally designed to study collective movement, but it unexpect-
edly yielded a critical insight into the benefits and selection pressures that
favor the formation of migratory bands. Individual band members were much
less likely to be killed by predators than were crickets that had been separated
from the group. The precise mechanisms by which individuals in bands gain
protection from predators were not identified (see Krause and Ruxton 2002 for
potential mechanisms), but 50–60% of the crickets removed from migratory
bands were killed by predators in just two days while none within the bands
were harmed during the same period. Thus, migratory bands form as part of
an anti-predator strategy and there is a very strong adaptive advantage to
staying in the group.

Although migratory bands confer anti-predator benefits, living in a huge
group of conspecifics also has a variety of potential costs (see Krause and
Ruxton 2002). It is precisely the interplay between these costs and benefits
that promotes cohesive and coordinated mass movement among individual
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Mormon crickets living in bands. Recent field experiments revealed that in-
dividual band members are subject to increased intraspecifc competition for
nutritional resources. Individual crickets within migratory bands were shown
to be deprived of specific nutrients, namely protein and salt (Simpson et al.
2006). When provided with augmented dietary protein, individual crickets
spent less time walking; a response that was not found when crickets had
ample carbohydrate. Thus, group movement results in part from locomotion
induced by protein deprivation and should act to increase the probability
that individual band members will encounter new resources and redress their
nutritional imbalances.

An additional cost of group formation is that Mormon crickets are no-
toriously cannibalistic (MacVean 1987; Gwynne 2001). Their propensity to
cannibalize is a function of the extent to which they are nutritionally de-
prived. Given that Mormon crickets are walking packages of protein and salt,
the insects themselves are often the most abundant source of these nutrients
in the habitat. As a result, individuals within the band that fail to move risk
being attacked and cannibalized by other nutritionally deprived crickets ap-
proaching from the rear (Simpson et al. 2006). Thus, the mass movement of
individuals in migratory bands is a forced march driven by cannibalism due to
individuals responding to their endogenous nutritional state. The fact that mi-
gratory bands are maintained as cohesive groups despite these seemingly dire
conditions suggests that the risk of predation upon leaving the band must
outweigh the combined costs of intraspecific competition for resources and
cannibalism. Importantly, ongoing experimental work strongly implicates the
threat of cannibalism as a general mechanism that mediates migratory band
movement in locusts as well as Mormon crickets (Couzin et al., unpublished).

4 Concluding Remarks

We have discussed in detail three cases of collective movement of large groups
of animals: honeybees, locusts and Mormon crickets. A description of their
movement would yield striking similarities: individuals in the group seem to
keep an almost fixed distance from their neighbors; they tend to align them-
selves with their nearest neighbor, and show a clear tendency to stay with the
group. In fact, this description can easily be extended to many other animals
that move in groups, such as to schools of fish and flocks of birds (Couzin
et al. 2005). However, the reasons for their collective movement are funda-
mentally different. For individual bees in a swarm it is critically important
to stay with the swarm, as an individual bee cannot live. Cohesive movement
in locusts is induced by the fine-scale structure of the environment they find
themselves in. And if you are a Mormon cricket, moving faster than the ones
behind you is essential to prevent yourself from becoming your neighbor’s next
meal.
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We as biologists are fascinated by nature’s diverse tapestry. Often, biol-
ogists tend to argue that nature is too diverse to allow its manifestations to
be captured by generalist models. This is not the message that we want to
convey in this chapter. As we have illustrated, many behaviors can only be
understood by constructing models, which, by definition, are an abstract rep-
resentation of reality. It is helpful to think about unifying theories that have
the power to explain behaviors across a range of biological systems. We en-
courage computer scientists and mathematicians to look at biological systems
and to become inspired, see patterns, and seek applications beyond biological
systems. But in doing so, we hope that researchers will be awed not by the
superficial similarities between natural systems but by the intricate and often
subtle differences that distinguish them.
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Summary. Optimization techniques inspired by swarm intelligence have become
increasingly popular during the last decade. They are characterized by a decentral-
ized way of working that mimics the behavior of swarms of social insects, flocks of
birds, or schools of fish. The advantage of these approaches over traditional tech-
niques is their robustness and flexibility. These properties make swarm intelligence
a successful design paradigm for algorithms that deal with increasingly complex
problems. In this chapter we focus on two of the most successful examples of op-
timization techniques inspired by swarm intelligence: ant colony optimization and
particle swarm optimization. Ant colony optimization was introduced as a technique
for combinatorial optimization in the early 1990s. The inspiring source of ant colony
optimization is the foraging behavior of real ant colonies. In addition, particle swarm
optimization was introduced for continuous optimization in the mid-1990s, inspired
by bird flocking.

1 Introduction

Swarm intelligence (SI), which is an artificial intelligence (AI) discipline, is
concerned with the design of intelligent multi-agent systems by taking inspi-
ration from the collective behavior of social insects such as ants, termites,
bees, and wasps, as well as from other animal societies such as flocks of birds
or schools of fish. Colonies of social insects have fascinated researchers for
many years, and the mechanisms that govern their behavior remained un-
known for a long time. Even though the single members of these colonies are
non-sophisticated individuals, they are able to achieve complex tasks in coop-
eration. Coordinated colony behavior emerges from relatively simple actions
or interactions between the colonies’ individual members. Many aspects of
the collective activities of social insects are self-organized and work without
a central control. For example, leafcutter ants cut pieces from leaves, bring
them back to their nest, and grow fungi used as food for their larvae. Weaver
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Fig. 1. Ants cooperate for retrieving a heavy prey. (Photographer: Christian Blum)

ant workers build chains with their bodies in order to cross gaps between two
leaves. The edges of the two leaves are then pulled together, and successively
connected by silk that is emitted by a mature larva held by a worker. Another
example concerns the recruitment of other colony members for prey retrieval
(see, for example, Fig. 1).

Other examples include the capabilities of termites and wasps to build
sophisticated nests, or the ability of bees and ants to orient themselves in
their environment. For more examples and a more detailed description see
Chap. 1 of this book, as well as [21, 92]. The term swarm intelligence was first
used by Beni in the context of cellular robotic systems where simple agents
organize themselves through nearest-neighbor interaction [4]. Meanwhile, the
term swarm intelligence is used for a much broader research field [21]. Swarm
intelligence methods have been very successful in the area of optimization,
which is of great importance for industry and science. This chapter aims at
giving an introduction to swarm intelligence methods in optimization.

Optimization problems are of high importance both for the industrial
world as well as for the scientific world. Examples of practical optimization
problems include train scheduling, timetabling, shape optimization, telecom-
munication network design, and problems from computational biology. The
research community has simplified many of these problems in order to ob-
tain scientific test cases such as the well-known traveling salesman problem
(TSP) [99]. The TSP models the situation of a traveling salesman who is
required to pass through a number of cities. The goal of the traveling sales-
man is to traverse these cities (visiting each city exactly once) so that the total
traveling distance is minimal. Another example is the problem of protein fold-
ing, which is one of the most challenging problems in computational biology,
molecular biology, biochemistry, and physics. It consists of finding the func-
tional shape or conformation of a protein in two- or three-dimensional space,
for example, under simplified lattice models such as the hydrophobic-polar
model [169]. The TSP and the protein folding problem under lattice models
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belong to an important class of optimization problems known as combinato-
rial optimization (CO).

In general, any optimization problem P can be described as a triple (S, Ω, f),
where

1. S is the search space defined over a finite set of decision variables Xi,
i = 1, . . . , n. In the case where these variables have discrete domains we
deal with discrete optimization (or combinatorial optimization), and in the
case of continuous domains P is called a continuous optimization problem.
Mixed variable problems also exist. Ω is a set of constraints among the
variables;

2. f : S → IR+ is the objective function that assigns a positive cost value to
each element (or solution) of S.

The goal is to find a solution s ∈ S such that f(s) ≤ f(s′), ∀ s′ ∈ S (in case
we want to minimize the objective function), or f(s) ≥ f(s′), ∀ s′ ∈ S (in case
the objective function must be maximized). In real-life problems the goal is
often to optimize several objective functions at the same time. This form of
optimization is labelled multiobjective optimization.

Due to the practical importance of optimization problems, many algo-
rithms to tackle them have been developed. In the context of combinatorial
optimization (CO), these algorithms can be classified as either complete or
approximate algorithms. Complete algorithms are guaranteed to find for ev-
ery finite size instance of a CO problem an optimal solution in bounded time
(see [133, 128]). Yet, for CO problems that are NP -hard [65], no polynomial
time algorithm exists, assuming that P �= NP. Therefore, complete meth-
ods might need exponential computation time in the worstcase. This often
leads to computation times too high for practical purposes. In approximate
methods such as SI-based algorithms we sacrifice the guarantee of finding op-
timal solutions for the sake of getting good solutions in a significantly reduced
amount of time. Thus, the use of approximate methods has received more and
more attention in the last 30 years. This was also the case in continuous op-
timization, due to other reasons: Approximate methods are usually easier to
implement than classical gradient-based techniques. Moreover, generally they
do not require gradient information. This is convenient for optimization prob-
lems where the objective function is only implicitly given (e.g., when objective
function values are obtained by simulation), or where the objective function
is not differentiable.

Two of the most notable swarm intelligence techniques for obtaining ap-
proximate solutions to optimization problems in a reasonable amount of com-
putation time are ant colony optimization (ACO) and particle swarm opti-
mization (PSO). These optimization methods will be explained in Sects. 2
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and 3 respectively. In Sect. 4 we will give some further examples of algorithms
for which swarm intelligence was the inspiring source.

2 Ant Colony Optimization

Ant colony optimization (ACO) [52] was one of the first techniques for ap-
proximate optimization inspired by swarm intelligence. More specifically, ACO
is inspired by the foraging behavior of ant colonies. At the core of this be-
havior is the indirect communication between the ants by means of chemical
pheromone trails, which enables them to find short paths between their nest
and food sources. This characteristic of real ant colonies is exploited in ACO
algorithms in order to solve, for example, discrete optimization problems.3

Seen from the operations research (OR) perspective, ACO algorithms be-
long to the class of metaheuristics [18, 68, 80]. The term metaheuristic, first
introduced in [67], derives from the composition of two Greek words. Heuristic
derives from the verb heuriskein (ευρισκειν) which means “to find”, while the
suffix meta means “beyond, in an upper level”. Before this term was widely
adopted, metaheuristics were often called modern heuristics [144]. In addition
to ACO, other algorithms, such as evolutionary computation, iterated local
search, simulated annealing, and tabu search, are often regarded as meta-
heuristics. For books and surveys on metaheuristics see [144, 68, 18, 80].

This section on ACO is organized as follows. First, in Sect. 2.1 we outline
the origins of ACO algorithms. In particular, we present the foraging behavior
of real ant colonies and show how this behavior can be transfered into a tech-
nical algorithm for discrete optimization. In Sect. 2.2 we provide a description
of ACO in more general terms, outline some of the most successful current
ACO variants, and list some representative examples of ACO applications. In
Sect. 2.3, we shortly describe some recent trends in ACO.

2.1 The Origins of Ant Colony Optimization

Marco Dorigo and colleagues introduced the first ACO algorithms in the early
1990s [46, 50, 51]. The development of these algorithms was inspired by the
observation of ant colonies. Ants are social insects. They live in colonies and
their behavior is governed by the goal of colony survival rather than being
focused on the survival of individuals. The behavior that provided the inspi-
ration for ACO is the ants’ foraging behavior, and in particular, how ants
3 Even though ACO algorithms were originally introduced for the application to

discrete optimization problems, the class of ACO algorithms also comprises meth-
ods for the application to problems arising in networks, such as routing and load
balancing (see, for example, [44]), and continuous optimization problems (see,
for example, [159]). In Sect. 2.3 we will shortly deal with ACO algorithms for
continuous optimization.
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(a) All ants are in the nest. There is
no pheromone in the environment

(b) The foraging starts. In probabil-
ity, 50% of the ants take the short
path (see the circles), and 50% take
the long path to the food source (see
the rhombs)

���Nest Food � �

�

Nest Food

(c) The ants that have taken the
short path have arrived earlier at
the food source. Therefore, when re-
turning, the probability that they
again take the short path is higher

(d) The pheromone trail on the
short path receives, in probabil-
ity, a stronger reinforcement, and
the probability of taking this path
grows. Finally, due to the evapora-
tion of the pheromone on the long
path, the whole colony will, in prob-
ability, use the short path

Fig. 2. An experimental setting that demonstrates the shortest path finding ca-
pability of ant colonies. Between the ants’ nest and the only food source exist two
paths of different lengths. In the four graphics, the pheromone trails are shown as
dashed lines whose thickness indicates the trails’ strength

can find shortest paths between food sources and their nest. When searching
for food, ants initially explore the area surrounding their nest in a random
manner. While moving, ants leave a chemical pheromone trail on the ground.
Ants can smell pheromone. When choosing their way, they tend to choose, in
probability, paths marked by strong pheromone concentrations. As soon as an
ant finds a food source, it evaluates the quantity and the quality of the food
and carries some of it back to the nest. During the return trip, the quantity of
pheromone that an ant leaves on the ground may depend on the quantity and
quality of the food. The pheromone trails will guide other ants to the food
source. It has been shown in [42] that the indirect communication between
the ants via pheromone trails—known as stigmergy [70]—enables them to find
shortest paths between their nest and food sources. This is explained in an
idealized setting in Fig. 2.

As a first step towards an algorithm for discrete optimization we present in
the following a discretized and simplified model of the phenomenon explained
in Fig. 2. After presenting the model we will outline the differences between
the model and the behavior of real ants. The considered model consists of a
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graph G = (V,E), where V consists of two nodes, namely vs (representing
the nest of the ants) and vd (representing the food source). Furthermore, E
consists of two links, namely e1 and e2, between vs and vd. To e1 we assign
a length of l1, and to e2 a length of l2 such that l2 > l1. In other words, e1

represents the short path between vs and vd, and e2 represents the long path.
Real ants deposit pheromone on the paths on which they move. Thus, the
chemical pheromone trails are modeled as follows. We introduce an artificial
pheromone value τi for each of the two links ei, i = 1, 2. Such a value indicates
the strength of the pheromone trail on the corresponding path. Finally, we
introduce na artificial ants. Each ant behaves as follows: Starting from vs (i.e.,
the nest), an ant chooses with probability

pi =
τi

τ1 + τ2
, i = 1, 2, (1)

between path e1 and path e2 for reaching the food source vd. Obviously, if
τ1 > τ2, the probability of choosing e1 is higher, and vice versa. For returning
from vd to vs, an ant uses the same path as it chose to reach vd,4 and it
changes the artificial pheromone value associated with the used edge. In more
detail, having chosen edge ei an ant changes the artificial pheromone value τi

as follows:
τi ← τi +

Q

li
, (2)

where the positive constant Q is a parameter of the model. In other words,
the amount of artificial pheromone that is added depends on the length of the
chosen path: the shorter the path, the higher the amount of added pheromone.

The foraging of an ant colony is in this model iteratively simulated as
follows: At each step (or iteration) all the ants are initially placed in node
vs. Then, each ant moves from vs to vd as outlined above. As mentioned in
the caption of Fig. 2(d), in nature the deposited pheromone is subject to
an evaporation over time. We simulate this pheromone evaporation in the
artificial model as follows:

τi ← (1 − ρ) · τi , i = 1, 2 (3)

The parameter ρ ∈ (0, 1] is a parameter that regulates the pheromone evap-
oration. Finally, all ants conduct their return trip and reinforce their chosen
path as outlined above.

We implemented this system and conducted simulations with the following
settings: l1 = 1, l2 = 2, Q = 1. The two pheromone values were initialized
to 0.5 each. Note that in our artificial system we cannot start with artificial
pheromone values of 0. This would lead to a division by 0 in Eq. 1. The results
4 Note that this can be enforced because the setting is symmetric, i.e., the choice

of a path for moving from vs to vd is equivalent to the choice of a path for moving
from vd to vs.
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(a) Colony size: 10 ants
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(b) Colony size: 100 ants

Fig. 3. Results of 100 independent runs (error bars show the standard deviation for
each 5th iteration). The x-axis shows the iterations, and the y-axis the percentage
of the ants using the short path

of our simulations are shown in Fig. 3. They clearly show that over time the
artificial colony of ants converges to the short path, i.e., after some time all
ants use the short path. In the case of 10 ants (i.e., na = 10, Fig. 3(a)) the
random fluctuations are bigger than in the case of 100 ants (Fig. 3(b)). This
indicates that the shortest path finding capability of ant colonies results from
a cooperation between the ants.

The main differences between the behavior of the real ants and the behav-
ior of the artificial ants in our model are as follows:

1. While real ants move in their environment in an asynchronous way, the
artificial ants are synchronized, i.e., at each iteration of the simulated
system, each of the artificial ants moves from the nest to the food source
and follows the same path back.

2. While real ants leave pheromone on the ground whenever they move,
artificial ants only deposit artificial pheromone on their way back to the
nest.

3. The foraging behavior of real ants is based on an implicit evaluation of a
solution (i.e., a path from the nest to the food source). By implicit solution
evaluation we mean the fact that shorter paths will be completed earlier
than longer ones, and therefore they will receive pheromone reinforcement
more quickly. In contrast, the artificial ants evaluate a solution with re-
spect to some quality measure which is used to determine the strength of
the pheromone reinforcement that the ants perform during their return
trip to the nest.

Ant System for the TSP: The First ACO Algorithm

The model that we used in the previous section to simulate the foraging
behavior of real ants in the setting of Fig. 2 cannot directly be applied to
CO problems. This is because we associated pheromone values directly with
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solutions to the problem (i.e., one parameter for the short path, and one pa-
rameter for the long path). This way of modeling implies that the solutions
to the considered problem are already known. However, in combinatorial op-
timization we intend to find an unknown optimal solution. Thus, when CO
problems are considered, pheromone values are associated with solution com-
ponents instead. Solution components are the units from which solutions to
the tackled problem are assembled. Generally, the set of solution components
is expected to be finite and of moderate size. As an example we present the
first ACO algorithm, called Ant System (AS) [46, 51], applied to the TSP,
which we mentioned in the introduction and which we define in more detail
in the following:

Definition 1. In the TSP is given a completely connected, undirected graph
G = (V,E) with edge weights. The nodes V of this graph represent the cities,
and the edge weights represent the distances between the cities. The goal is to
find a closed path in G that contains each node exactly once (henceforth called
a tour) and whose length is minimal. Thus, the search space S consists of all
tours in G. The objective function value f(s) of a tour s ∈ S is defined as the
sum of the edge weights of the edges that are in s.

Concerning the AS approach, the edges of the given TSP graph can be
considered solution components, i.e., for each ei,j is introduced a pheromone
value τi,j . The task of each ant consists in the construction of a feasible TSP
solution, i.e., a feasible tour. In other words, the notion of task of an ant
changes from “choosing a path from the nest to the food source” to “con-
structing a feasible solution to the tackled optimization problem”. Note that
with this change of task, the notions of nest and food source lose their meaning.

Each ant constructs a solution as follows. First, one of the nodes of the
TSP graph is randomly chosen as start node. Then, the ant builds a tour in
the TSP graph by moving in each construction step from its current node (i.e.,
the city in which it is located) to another node which it has not visited yet.
At each step the traversed edge is added to the solution under construction.
When no unvisited nodes are left the ant closes the tour by moving from her
current node to the node in which it started the solution construction. This
way of constructing a solution implies that an ant has a memory T to store the
already-visited nodes. Each solution construction step is performed as follows.
Assuming the ant to be in node vi, the subsequent construction step is done
with probability

p(ei,j) =
τi,j∑

{k∈{1,...,|V |}|vk /∈T}
τi,k

,∀ j ∈ {1, . . . , |V |}, vj /∈ T . (4)

Once all ants of the colony have completed the construction of their solution,
pheromone evaporation is performed as follows:
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Fig. 4. The ACO framework

τi,j ← (1 − ρ) · τi,j ,∀ τi,j ∈ T (5)

Then the ants perform their return trip. Hereby, an ant—having constructed
a solution s—performs for each ei,j ∈ s the following pheromone deposit:

τi,j ← τi,j +
Q

f(s)
, (6)

where Q is again a positive constant and f(s) is the objective function value of
the solution s. As explained in the previous section, the system is iterated—
applying na ants per iteration—until a stopping condition (e.g., a time limit)
is satisfied.

Even though the AS algorithm has proved that the ants’ foraging behavior
can be transferred into an algorithm for discrete optimization, it gas generally
been found to be inferior to state-of-the-art algorithms. Therefore, over the
years several extensions and improvements of the original AS algorithm were
introduced. They are all covered by the definition of the ACO framework,
which we will outline in the following.

2.2 Ant Colony Optimization: A General Description

The ACO framework, as we know it today, was first defined by Dorigo and
colleagues in 1999 [48]. The recent book by Dorigo and Stützle gives a more
comprehensive description [52]. The definition of the ACO framework covers
most—if not all—existing ACO variants for discrete optimization problems.
In the following, we give a general description of this framework.

The basic way of working of an ACO algorithm is graphically shown in
Fig. 4. Given a CO problem to be solved, one first has to derive a finite set C of
solution components which are used to assemble solutions to the CO problem.
Second, one has to define a set of pheromone values T . This set of values
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is commonly called the pheromone model, which is—seen from a technical
point of view—a parameterized probabilistic model. The pheromone model
is one of the central components of ACO. The pheromone values τi ∈ T are
usually associated with solution components.5 The pheromone model is used
to probabilistically generate solutions to the problem under consideration by
assembling them from the set of solution components. In general, the ACO
approach attempts to solve an optimization problem by iterating the following
two steps:

• candidate solutions are constructed using a pheromone model, that is, a
parameterized probability distribution over the solution space;

• the candidate solutions are used to modify the pheromone values in a way
that is deemed to bias future sampling towards high-quality solutions. The
pheromone update aims to concentrate the search in regions of the search
space containing high-quality solutions. It implicitly assumes that good
solutions consist of good solution components.

In the following we give a more detailed description of solution construction
and pheromone update.

Solution Construction

Artificial ants can be regarded as probabilistic constructive heuristics that as-
semble solutions as sequences of solution components. The finite set of solution
components C = {c1, . . . , cn} is hereby derived from the discrete optimization
problem under consideration. For example, in the case of AS applied to the
TSP (see previous section) each edge of the TSP graph was considered a so-
lution component. Each solution construction starts with an empty sequence
s = 〈〉. Then, the current sequence s is at each construction step extended
by adding a feasible solution component from the set N (s) ⊆ C \ s.6 The
specification of N (s) depends on the solution construction mechanism. In the
example of AS applied to the TSP (see previous section) the solution con-
struction mechanism restricted the set of traversable edges to the ones that
connected the ants’ current node to unvisited nodes. The choice of a solution
component from N (s) is at each construction step performed probabilistically
with respect to the pheromone model. In most ACO algorithms the respective
probabilities—also called the transition probabilities—are defined as follows:

p(ci | s) =
[τi]

α · [η(ci)]
β

∑

cj∈N (s)

[τj ]
α · [η(cj)]

β
, ∀ ci ∈ N (s), (7)

5 Note that the description of ACO as given for example in [48] allows pheromone
values also to be associated with links between solution components. However,
for the purpose of this introduction it is sufficient to assume pheromone values
associated with components.

6 Note that for this set operation the sequence s is regarded as an ordered set.
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where η is an optional weighting function, that is, a function that, sometimes
depending on the current sequence, assigns at each construction step a heuris-
tic value η(cj) to each feasible solution component cj ∈ N (s). The values that
are given by the weighting function are commonly called the heuristic infor-
mation. Furthermore, the exponents α and β are positive parameters whose
values determine the relation between pheromone information and heuristic
information. In the previous section’s TSP example, we chose not to use any
weighting function η, and we set α to 1.

Pheromone Update

Different ACO variants mainly differ in the update of the pheromone val-
ues they apply. In the following, we outline a general pheromone update rule
in order to provide the basic idea. This pheromone update rule consists of
two parts. First, a pheromone evaporation, which uniformly decreases all the
pheromone values, is performed. From a practical point of view, pheromone
evaporation is needed to avoid a too-rapid convergence of the algorithm to-
wards a suboptimal region. It implements a useful form of forgetting, favoring
the exploration of new areas in the search space. Second, one or more solu-
tions from the current and/or from earlier iterations are used to increase the
values of pheromone trail parameters on solution components that are part of
these solutions:

τi ← (1 − ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}
ws · F (s), (8)

for i = 1, . . . , n. Supd denotes the set of solutions that are used for the up-
date. Furthermore, ρ ∈ (0, 1] is a parameter called evaporation rate, and
F : S �→ IR+ is a so-called quality function such that f(s) < f(s′) ⇒ F (s) ≥
F (s′), ∀s �= s′ ∈ S. In other words, if the objective function value of a solu-
tion s is better than the objective function value of a solution s′, the quality
of solution s will be at least as high as the quality of solution s′. Equation
(8) also allows an additional weighting of the quality function, i.e., ws ∈ IR+

denotes the weight of a solution s.
Instantiations of this update rule are obtained by different specifications of

Supd and by different weight settings. In most cases, Supd is composed of some
of the solutions generated in the respective iteration (henceforth denoted by
Siter) and the best solution found since the start of the algorithm (henceforth
denoted by sbs). Solution sbs is often called the best-so-far solution. A well-
known example is the AS-update rule, that is, the update rule of AS (see
also Sect. 2.1). The AS-update rule, which is well known due to the fact that
AS was the first ACO algorithm to be proposed in the literature, is obtained
from update rule (8) by setting Supd ← Siter and ws = 1, ∀s ∈ Supd. An
example of a pheromone update rule that is more used in practice is the
IB-update rule (where IB stands for iteration-best). The IB-update rule is



54 C. Blum and X. Li

Table 1. A selection of ACO variants

ACO variant Authors Main reference

Elitist AS (EAS) Dorigo [46]
Dorigo, Maniezzo, and Colorni [51]

Rank-based AS (RAS) Bullnheimer, Hartl, and Strauss [26]
MAX–MIN Ant System (MMAS) Stützle and Hoos [164]
Ant Colony System (ACS) Dorigo and Gambardella [49]
Hyper-Cube Framework (HCF) Blum and Dorigo [16]

given by Supd ← {sib = argmax{F (s) | s ∈ Siter}} with wsib
= 1, that is,

by choosing only the best solution generated in the respective iteration for
updating the pheromone values. This solution, denoted by sib, is weighted
by 1. The IB-update rule introduces a much stronger bias towards the good
solutions found than the AS-update rule. However, this increases the danger of
premature convergence. An even stronger bias is introduced by the BS-update
rule, where BS refers to the use of the best-so-far solution sbs. In this case,
Supd is set to {sbs} and sbs is weighted by 1, that is, wsbs

= 1. In practice,
ACO algorithms that use variations of the IB-update or the BS-update rule
and that additionally include mechanisms to avoid premature convergence
achieve better results than algorithms that use the AS-update rule. Examples
are given in the following section.

Well-Performing ACO Variants

Even though the original AS algorithm achieved encouraging results for the
TSP problem, it was found to be inferior to state-of-the-art algorithms for
the TSP as well as for other CO problems. Therefore, several extensions and
improvements of the original AS algorithm were introduced over the years.
An overview is provided in Table 1. These ACO variants mostly differ in the
pheromone update rule that is applied.

In addition to these ACO variants, the ACO community has developed
additional algorithmic features for improving the search process performed by
ACO algorithms. A prominent example is the so-called candidate list strategy,
which is a mechanism to restrict the number of available choices at each
solution construction step. Usually, this restriction applies to a number of
the best choices with respect to their transition probabilities (see Eq. 7). For
example, in the case of the application of ACS (see Table 1) to the TSP,
the restriction to the closest cities at each construction step both improved
the final solution quality and led to a significant speedup of the algorithm
(see [61]). The reasons for this are as follows: First, in order to construct
high-quality solutions it is often enough to consider only the “promising”
choices at each construction step. Second, to consider fewer choices at each
construction step speeds up the solution construction process, because the
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reduced number of choices reduces the computation time needed to make a
choice.

Applications of ACO Algorithms

As mentioned before, ACO was introduced by means of the proof-of-concept
application to the TSP. Since then, ACO algorithms have been applied to
many optimization problems. First, classical problems other than the TSP,
such as assignment problems, scheduling problems, graph coloring, the max-
imum clique problem, or vehicle routing problems were tackled. More recent
applications include, for example, cell placement problems arising in circuit
design, the design of communication networks, bioinformatics problems, and
problems arising in continuous optimization. In recent years some researchers
have also focused on the application of ACO algorithms to multiobjective
problems and to dynamic or stochastic problems.

The bioinformatics and biomedical fields in particular show an increasing
interest in ACO. Recent applications of ACO to problems arising in these ar-
eas include the applications to protein folding [153, 154], to multiple sequence
alignment [127], to DNA sequencing by hybridization [20], and to the predic-
tion of major histocompatibility complex (MHC) class II binders [86]. ACO
algorithms are currently among the state-of-the-art methods for solving, for
example, the sequential ordering problem [62], the resource constraint project
scheduling problem [120], the open shop scheduling problem [14], assembly
line balancing [15], and the 2D and 3D hydrophobic polar protein folding
problem [154]. In Table 2 we provide a list of representative ACO applica-
tions. For a more comprehensive overview that also covers the application of
ant-based algorithms to routing in telecommunication networks we refer the
interested reader to [52].

2.3 Recent Trends

Theoretical Work on ACO

The first theoretical works on ACO algorithms appeared in 2002. They deal
with the question of algorithm convergence [75, 76, 163]. In other words: will a
given ACO algorithm find an optimal solution when given enough resources?
This is an interesting question, because ACO algorithms are stochastic search
procedures in which the pheromone update could prevent them from ever
reaching an optimum.

Recently, researchers have been dealing with the relation of ACO algo-
rithms to other methods for learning and optimization. The work presented
in [7] relates ACO to the fields of optimal control and reinforcement learning,
whereas [183] describes the common aspects of ACO algorithms and proba-
bilistic learning algorithms such as stochastic gradient ascent (SGA) and the
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Table 2. A representative selection of ACO applications

Problem Authors Reference

Traveling salesman problem Dorigo, Maniezzo, and Colorni [46, 50, 51]
Dorigo and Gambardella [49]
Stützle and Hoos [164]

Quadratic assignment problem Maniezzo [109]
Maniezzo and Colorni [111]
Stützle and Hoos [164]

Scheduling problems Stützle [162]
den Besten, Stützle, and Dorigo [41]
Gagné, Price, and Gravel [59]
Merkle, Middendorf, and Schenk [120]
Blum (resp., Blum and Sampels) [14, 19]

Vehicle routing problems Gambardella, Taillard, and Agazzi [63]
Reimann, Doerner, and Hartl [145]

Timetabling Socha, Sampels, and Manfrin [160]
Set packing Gandibleux, Delorme, and T’Kindt [64]
Graph coloring Costa and Hertz [38]
Shortest supersequence problem Michel and Middendorf [123]
Sequential ordering Gambardella and Dorigo [62]
Constraint satisfaction problems Solnon [161]
Data mining Parpinelli, Lopes, and Freitas [134]
Maximum clique problem Bui and Rizzo Jr [25]
Edge-disjoint paths problem Blesa and Blum [13]
Cell placement in circuit design Alupoaei and Katkoori [2]
Communication network design Maniezzo, Boschetti, and Jelasity [110]
Bioinformatics problems Shmygelska, Aguirre-Hernández, and Hoos [153]

Moss and Johnson [127]
Karpenko, Shi, and Dai [86]
Shmygelska and Hoos [154]
Korb, Stützle, and Exner [93]
Blum and Yábar Vallès [20]

Industrial problems Bautista and Pereira [3]
Blum, Bautista, and Pereira [15]
Silva, Runkler, Sousa, and Palm [156]
Gottlieb, Puchta, and Solnon [69]
Corry and Kozan [37]

Continuous optimization Bilchev and Parmee [6]
Monmarché, Venturini, and Slimane [125]
Dréo and Siarry [54]
Socha and Dorigo [159]
Socha and Blum [158]

Multiobjective problems Guntsch and Middendorf [74]
Lopéz-Ibáñez, Paquete, and Stützle [106]
Doerner, Gutjahr, Hartl, Strauss, and Stummer [45]

Dynamic (or stochastic) problems Guntsch and Middendorf [73]
Bianchi, Gambardella, and Dorigo [5]

Music Guéret, Monmarché, and Slimane [72]

cross-entropy (CE) method. Meuleau and Dorigo have shown in [121] that
ACO’s pheromone update is very similar to stochastic gradient ascent in the
space of pheromone values.

While convergence proofs can provide insight into the working of an al-
gorithm, they are usually not very useful to the practitioner who wants to
implement efficient algorithms. More relevant for practical applications might
be the research efforts that were aimed at a better understanding of the behav-
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ior of ACO algorithms. Representative works are the ones on negative search
bias [17] and the study of models of ACO algorithms [117, 118]. For a recent
survey on theoretical work on ACO see [47].

Applying ACO to Continuous Optimization Problems

Many practical optimization problems can be formulated as continuous opti-
mization problems, that is, problems in which the decision variables have con-
tinuous domains. While ACO algorithms were originally introduced to solve
discrete problems, their adaptation to solve continuous optimization problems
enjoys increasing attention. Early applications of ant-based algorithms to con-
tinuous optimization include algorithms such as Continuous ACO (CACO) [6],
API [125], and Continuous Interacting Ant Colony (CIAC) [54]. However,
all these approaches are conceptually quite different from ACO for discrete
problems. The latest approach called ACOR, which was proposed by Socha
in [157, 159], is closest to the spirit of ACO for discrete problems. While
ACO algorithms for discrete optimization problems construct solutions by
sampling at each construction step a discrete probability distribution that is
derived from the pheromone information, ACOR utilizes a continuous proba-
bility density function (PDF) for generating solutions. This density function is
produced, for each solution construction, from an archive of solutions that the
algorithm keeps and updates at all times. The archive update corresponds to
the pheromone update in ACO algorithms for discrete optimization problems.
Recently, ACOR was applied to neural network training [158].

Hybridizing ACO with Branch & Bound Derivatives

Beam search (BS) is a classical tree search method that was introduced in
the context of scheduling [131], but has since then been successfully applied
to many other CO problems (e.g., see [40]). BS algorithms are incomplete
derivatives of branch & bound algorithms, and are therefore approximate
methods. The central idea behind BS is to construct a number of kbw (the
so-called beam width) solutions in parallel and non-independently. At each
construction step the algorithm selects at most kbw partial solutions by utiliz-
ing bounding information. Even though both ACO and BS have the common
feature that they are based on the idea of constructing candidate solutions
step-by-step, the ways by which the two methods explore the search space are
quite different. While BS is a deterministic algorithm that uses a lower bound
for guiding the search process, ACO algorithms are adaptive and probabilistic
procedures. Furthermore, BS algorithms reduce the search space in the hope
of not excluding all optimal solutions, while ACO algorithms consider the
whole search space. Based on these observations Blum introduced a hybrid
between ACO and BS which was labelled Beam-ACO [14, 15]. Beam-ACO is
an ACO algorithm in which the standard ACO solution construction mecha-
nism is replaced by a probabilistic beam search procedure. Work that is in a
similar vein can be found in [109, 112].
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ACO and Constraint Programming

Another interesting hybridization example concerns the use of constraint pro-
gramming (CP) techniques (see [114]) for restricting the search performed
by an ACO algorithm to promising regions of the search space. The motiva-
tion for this type of hybridization is as follows: Generally, ACO algorithms
are competitive with other optimization techniques when applied to problems
that are not overly constrained. However, when highly constrained problems
such as scheduling or timetabling are concerned, the performance of ACO
algorithms generally degrades. Note that this is also the case for other meta-
heuristics. The reason is to be found in the structure of the search space:
When a problem is not overly constrained, it is usually not difficult to find
feasible solutions. The difficulty rather lies in the optimization part, namely
the search for good feasible solutions. On the other hand, when a problem is
highly constrained the difficulty is rather in finding any feasible solution. This
is where CP comes into play, because these problems are the target problems
for CP applications. The idea of hybridizing ACO with CP is simple [122]. At
each iteration, first constraint propagation is applied in order to reduce the
remaining search tree. Then, solutions are constructed in the standard ACO
way with respect to the reduced search tree. After the pheromone update,
additional constraints might be added to the system.

Applying ACO in a Multilevel Framework

Multilevel techniques have been employed for quite a long time, especially in
the area of multigrid methods (see [23] for an overview). More recently, they
have been brought into focus by Walshaw for the application to CO. Walshaw
and coworkers applied multilevel techniques to graph-based problems such
as mesh partitioning [177]. The basic idea of a multilevel scheme is simple.
Starting from the original problem instance, smaller and smaller problem in-
stances are obtained by successive coarsening until some stopping criteria are
satisfied. This creates a hierarchy of problem instances in which the problem
instance of a given level is always smaller (or of equal size) to the problem
instance of the next lower level. Then, a solution is computed to the small-
est problem instance and successively transformed into a solution of the next
higher level until a solution for the original problem instance is obtained. At
each level, the obtained solution might be subject to a refinement process, for
example, an ACO algorithm. Applications of ACO in multilevel frameworks
include [94, 95, 20].

3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic optimiza-
tion technique modelled on the social behaviors observed in animals or insects,
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e.g., bird flocking, fish schooling, and animal herding [92]. It was originally
proposed by James Kennedy and Russell Eberhart in 1995 [91]. Since its
inception, PSO has gained increasing popularity among researchers and prac-
titioners as a robust and efficient technique for solving difficult optimization
problems. In PSO, individual particles of a swarm represent potential so-
lutions, which move through the problem search space seeking an optimal,
or good enough, solution. The particles broadcast their current positions to
neighboring particles. The position of each particle is adjusted according to its
velocity (i.e., rate of change) and the difference between its current position,
respectively the best position found by its neighbors, and the best position it
has found so far. As the model is iterated, the swarm focuses more and more
on an area of the search space containing high-quality solutions.

PSO has close ties to artificial life models. Early works by Reynolds on
a flocking model Boids [146], and Heppner’s studies on rules governing large
numbers of birds flocking synchronously [78], indicated that the emergent
group dynamics such as the bird flocking behavior are based on local inter-
actions. These studies were the foundation for the subsequent development
of PSO for the application to optimization. PSO is in some way similar to
cellular automata (CA), which are often used for generating interesting self-
replicating patterns based on very simple rules, e.g., John Conway’s Game
of Life. CAs have three main attributes: (1) individual cells are updated in
parallel; (2) the value of each new cell depends only on the old values of the
cell and its neighbors; and (3) all cells are updated using the same rules [149].
Particles in a swarm are analogous to CA cells, whose states are updated in
many dimensions simultaneously.

The term particle swarm was coined by James Kennedy and Russell Eber-
hart, who were responsible for inventing the original PSO. Initially they in-
tended to model the movements of flocks of birds and schools of fish. As
their model further evolved to handle optimization, the visual plots they used
started to display something more like swarms of mosquitoes. The term par-
ticle was used simply because the notion of velocity was adopted in PSO and
particle seemed to be the most appropriate term in this context.

This section on PSO is organized as follows. In Sect. 3.1 we first present
the original PSO developed by Kennedy and Eberhart. This is followed by
descriptions of a number of key improvements and generalizations to the ba-
sic PSO algorithm. We then give an overview of several PSO variants that
represent important progress made in this area, and a list of representative
examples of PSO applications. In Sect. 3.2 we outline some recent trends in
PSO research, including its theoretical works and its application in the areas of
multiobjective optimization, dynamic optimization, and constraint handling.

3.1 Particle Swarm Optimization: An Introduction

In PSO, the velocity of each particle is modified iteratively by its personal best
position (i.e., the best position found by the particle so far), and the best posi-
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tion found by particles in its neighborhood. As a result, each particle searches
around a region defined by its personal best position and the best position
from its neighborhood. Henceforth we use vi to denote the velocity of the ith
particle in the swarm, xi to denote its position, pi to denote the personal best
position and pg the best position found by particles in its neighborhood. In
the original PSO algorithm, vi and xi, for i = 1, . . . , n, are updated according
to the following two equations [91]:

vi ← vi + ϕ1 ⊗ (pi − xi) + ϕ2 ⊗ (pg − xi), (9)
xi ← xi + vi, (10)

where ϕ1 = c1R1 and ϕ2 = c2R2. R1 and R2 are two separate functions
each returning a vector comprising random values uniformly generated in the
range [0,1]. c1 and c2 are acceleration coefficients. The symbol ⊗ denotes point-
wise vector multiplication. Equation (9) shows that the velocity term vi of a
particle is determined by three parts, the “momentum”, the “cognitive”, and
the “social” part. The “momentum” term vi represents the previous velocity
term which is used to carry the particle in the direction it has travelled so far;
the “cognitive” part, ϕ1⊗ (pi −xi), represents the tendency of the particle to
return to the best position it has visited so far; the “social” part, ϕ2⊗(pg−xi),
represents the tendency of the particle to be attracted towards the position
of the best position found by the entire swarm.

Position pg in the “social” part is the best position found by particles in
the neighborhood of the ith particle. Different neighborhood topologies can
be used to control information propagation between particles. Examples of
neighborhood topologies include ring, star, and von Neumann. Constricted
information propagation as a result of using small neighborhood topologies
such as von Neumann has been shown to perform better on complex problems,
whereas larger neighborhoods generally perform better on simpler problems
[116]. Generally speaking, a PSO implementation that chooses pg from within
a restricted local neighborhood is referred to as lbest PSO, whereas choosing
pg without any restriction (hence from the entire swarm) results in a gbest
PSO. Algorithm 1 summarizes a basic PSO algorithm.

Figure 3.1 shows each component of the velocity term vi in vector form,
and the resulting position, xi (updated), for the ith particle. Note that the
inertia coefficient w is used to scale the previous velocity term, normally to
reduce the “momentum” of the particle. More discussion on w will be provided
in the next section.

Earlier studies showed that the velocity as defined in Eq. (9) has a tendency
to explode to a large value, resulting in particles exceeding the boundaries of
the search space. This is more likely to happen especially when a particle is
far from pg or pi. To overcome this problem, a velocity clamping method
can be adopted where the maximum allowed velocity value is set to Vmax

in each dimension of vi. This method does not necessarily prevent particles
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Algorithm 1 The PSO algorithm, assuming maximization
Randomly generate an initial swarm
repeat

for each particle i do
if f(xi) > f(pi) then pi ← xi

pg = max(pneighbours)
Update velocity (see Eq. (9))
Update position (see Eq. (10))

end for
until termination criterion is met

Fig. 5. Visualizing PSO components as vectors

from leaving the search space nor from converging. However, it does limit the
particle step size, thereby preventing further divergence of particles.

Inertia Weight

Observe that the positions pi and pg in Eq. (9) can be collapsed into a single
term p without losing any information:

vi ← vi + ϕ ⊗ (p − xi), (11)
xi ← xi + vi, (12)

where p = ϕ1pi+ϕ2pg

ϕ1+ϕ2
, and ϕ = ϕ1 +ϕ2. Note that p represents the weighted

average of the pi and pg. It can be seen that the previous velocity term
in Eq. (11) tends to keep the particle moving in the current direction. A
coefficient inertia weight, w, can be used to control this influence on the new
velocity. The velocity update (see Eq. (9)) can be now revised as:
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vi ← wvi + ϕ1 ⊗ (pi − xi) + ϕ2 ⊗ (pg − xi) (13)

The inertia-weighted PSO can converge under certain conditions even
without using Vmax [33]. For w > 1, velocities increase over time, causing
particles to diverge eventually beyond the boundaries of the search space.
For w < 0, velocities decrease over time, eventually reaching 0, resulting in
convergence behavior. Eberhart and Shi suggested the use of a time-varying
inertia weight, gradually decreasing its value typically from 0.9 to 0.4 (with
ϕ = 4.0) [55].

Clerc described a general PSO algorithm that uses a constriction coeffi-
cient. Among the models suggested, the Constriction Type 1 PSO is equiva-
lent to the inertia-weighted PSO [33]. The velocity update in Eq. (13) can be
rewritten as:

vi ← χ(vi + ϕ1 ⊗ (pi − xi) + ϕ2 ⊗ (pg − xi)), (14)

where χ = 2∣
∣
∣2−ϕ−

√
ϕ2−4ϕ

∣
∣
∣
, and ϕ = c1 + c2, ϕ > 4. If ϕ is set to 4.1, and

c1 = c2 = 2.05, then the constriction coefficient χ will be 0.7298. Applying
χ in Eq. (14) results in the previous velocity scaled by 0.7298, and the “cog-
nitive” and “social” parts multiplied by 1.496 (i.e., 0.7298 times 2.05). Both
theoretical and empirical results suggested that the above configuration using
a constant constriction coefficient χ = 0.7298 ensures convergent behavior
[55] without using Vmax. However, early empirical studies by Eberhart and
Shi suggested that it may be still a good idea to use velocity clamping to-
gether with the constriction coefficient, which showed improved performance
on certain problems.

Fully Informed Particle Swarm

Equation (11) indicates that a particle tends to converge towards a point de-
termined by p = ϕ1pi+ϕ2pg

ϕ1+ϕ2
, where ϕ = ϕ1+ϕ2. In the fully informed particle

swarm (FIPS) as proposed by Mendes [116], p can be further generalized to
any number of terms:

p =

∑
k∈N r[0, cmax

|N | ] ⊗ pk
∑

k∈N ϕk
, (15)

where pk denotes the best previous position found by the kth particle in N ,
which is a set of neighbors including the current particle itself. Note again
that the division is a point wise operator here. If we set k = 2, p1 = pi,
and p2 = pg, with both pi,pg ∈ N , then the Constriction Type 1 PSO is
just a special case of the more general PSO defined in Eq. (11). A significant
implication of Eq. (15) is that it allows us to think more freely about employing
terms of influence other than just pi and pg [116] [90].
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PSO Variants

Although the canonical PSO was designed for continuous optimization, it can
be extended to operate on binary search spaces. Kennedy and Eberhart devel-
oped a simple binary PSO by altering the velocity term in the canonical PSO
into a probability threshold to determine if xi is 0 or 1 [92]. PSO can be also
extended to solve discrete or mixed (continuous and discrete) optimization
problems [180, 32]. PSO can be adapted to work with discrete variables by
simply discretizing the values after using them in the velocity and position
update equations. Clerc provided several examples of PSO applied to com-
binatorial problems such as the knapsack, the traveling salesman, and the
quadratic assignment problems [32].

An adaptive PSO version, tribes, was developed by Clerc [32], where the
swarm size is determined by strategies for generating new particles as well
as for removing poorly performing particles. The concept of a tribe is used
to group particles that inform each other. Clerc’s goal was to develop a PSO
which can find the parameters on its own (e.g., swarm size), and still maintain
a relatively good performance.

Kennedy proposed a PSO variant, bare-bones PSO, which does not use the
velocity term [89]. In the bare-bones PSO each dimension of the new position
of a particle is randomly selected from a Gaussian distribution with the mean
being the average of pi and pg and the standard deviation being the distance
between pi and pg:

xi ← N
(

pi + pg

2
, ||pi − pg||

)

(16)

Note that there is no velocity term used in Eq. (16). The new particle posi-
tion is simply generated via the Gaussian distribution. Sampling distributions
other than Gaussian can also be employed [32, 147].

It has been observed that the canonical PSO tends to prematurely con-
verge to local optima. To combat this problem, several PSO variants have
incorporated a diversity maintenance mechanism. For example, ARPSO (at-
tractive and repulsive PSO) was proposed to use a diversity measure to trigger
an alternation between phases of attraction and repulsion [148]. A dissipative
PSO was described in [179] to increase randomness. Similarly, a PSO with
self-organized criticality was introduced in [107]. A PSO variant based on
fitness-distance-ratio (FDR-PSO) was proposed in [173], to encourage inter-
actions among particles that are both fit and close to each other. FDR-PSO
was shown to give superior performance to the canonical PSO. FDR-PSO
can be seen as using a dynamically defined neighborhood topology. Various
neighborhood topologies have been adopted to restrict particle interactions
[165, 116]. In particular, the von Neumann neighborhood topology has been
shown to provide good performance across a range of test functions [116]. In
[83], an H-PSO (Hierarchical PSO) was proposed, where a hierarchical tree
structure is adopted to restrict the interactions among particles. Each particle
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is influenced only by its own personal best position and by the best position
of the particle that is directly above it in the hierarchy. Another recently pro-
posed PSO, CLPSO [105], which is in some way similar to FDR-PSO, allows
incorporation of learning from more previous personal best positions. Gaus-
sian distribution was employed in a PSO variant as a mutation operator in
[79]. A cooperative PSO, similar to those previously developed coevolutionary
algorithms, was also proposed in [171].

PSO variants have also been developed for solving multimodal optimiza-
tion problems, where multiple equally good optima are sought. Niching meth-
ods such as crowding and fitness sharing that have been developed for evolu-
tionary algorithms can be easily incorporated into PSO algorithms. Some rep-
resentative PSO niching variants include NichePSO [142], SPSO (Speciation-
based PSO) [101, 135, 8], and a PSO algorithm using a stretching function
[138].

Applications of PSO Algorithms

PSO algorithms have been applied to optimization problems ranging from
classical problems such as scheduling, the traveling salesman problem, neural
network training, and task assignment, to highly specialized applications such
as reactive power and voltage control [180], biomedical image registration
[176], and even music composition [10]. In recent years, PSO is also a popular
choice of many researchers for handling multiobjective optimization [155] and
dynamic optimization problems [102].

One of the earliest applications of PSO was the evolution of neural net-
work structures. Eberhart et al. used PSO to replace the traditional back-
propagation learning algorithm in a multilayer perceptron [57]. Because of its
fast convergence behavior, using PSO for neural network training can some-
times save a considerable amount of computation time compared with other
optimization methods.

Table 3 shows a list of examples of PSO applications that can be found in
the literature. For more information on PSO applications we refer the inter-
ested reader to [32].

3.2 Recent Trends

Theoretical Work on PSO

Since PSO was first introduced by Kennedy and Eberhart in 1995 [91], several
studies have been carried out on understanding the convergence properties of
PSO [33, 132, 170, 168]. Since an analysis of the convergence behavior of a
swarm of multiple interactive particles is difficult, many of these works focus
on studying the convergence behaviors of a simplified PSO system.

Kennedy provided the first analysis of a simplified particle behavior in [88],
where particle trajectories for a range of variable choices were given. In [132],
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Table 3. A representative selection of PSO applications

Problem Authors Reference

Traveling salesman problem Onwubolu and Clerc [130]
Flowshop scheduling Rameshkumar, Suresh and Mohanasundaram [143]
Task assignment Salman, Imtiaz and Al-Madani [150]
Neural networks Kennedy, Eberhart, and Shi [92]

Mendes, Cortez, Rocha, and Neves [115]
Conradie, Miikkulaninen and Aldrich [35]
Gudisz and Venayagamoorthy [71]
Settles, Rodebaugh and Soule [152]

Bioinformatics Correa, Freitas and Johnson [36]
Georgiou, Pavlidis, Parsopoulos and Vrahatis [66]

Industrial applications Katare, Kalos and West [87]
Marinke, Matiko, Araujo and Coelho [113]

Reactive power and voltage control Yoshida, Kawata, et. al [180]
PID controller Gaing [60]
Biomedical image registration Wachowiak et. al [176]
Floor planning Sun, Hsieh, Wang and Lin [166]
Quantizer design Zha and Venayagamoorthy [182]
Power systems Venayagamoorthy [174]
Clustering analysis Chen and Ye [30]
Constraint handling Pulido and Coello [140]

Liang and Suganthan [104]
Electromagnetic applications Mikki and Kishk [124]
Multiobjective problems Moore and Chapman [126]

Coello and Lechuga [34]
Fieldsend and Singh [58]
Hu and Eberhart [81]
Parsopoulos and Vrahatis [137]
Li [100]

Dynamic problems Carlisle and Dozier [28]
Hu and Eberhart [82]
Eberhart and Shi [56]
Carlisle and Dozier [29]
Blackwell and Branke [11, 12]
Jason and Middendorf [84]
Parrott and Li [135]
Li, Blackwell, and Branke [102]

Music Blackwell and Bentley [10]

Ozcan and Mohan showed that a particle in a one-dimensional PSO system,
with its pi, pg, ϕ1, and ϕ2 kept constant, follows the path of a sinusoidal
wave, where the amplitude and frequency of the wave are randomly decided.

A formal theoretical analysis of the convergence properties of a simplified
PSO was provided by Clerc [33]. Clerc [33] represented the PSO system as
defined in equations (11) and (12) as a dynamic system in state-space form.
By simplifying the PSO to a deterministic dynamic system, its convergence
can be shown based on the eigenvalues of the state matrix. A similar work was
also carried out by Bergh and Engelbrecht [170], where regions of parameter
space that guarantee convergence are identified. The conditions for conver-
gence derived from both studies [33, 170] are: w < 1 and w > 1

2 (c1 + c2) − 1.
In a more recent work [172], Bergh and Engelbrecht generalized the above

analysis by including the inertia weight w, and also provided a formal conver-
gence proof of particles in this representation. Furthermore, they studied the
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particle trajectory with a relaxed assumption to allow stochastic values for
ϕ1 and ϕ2. They demonstrated that a particle can exhibit a combination of
divergent and convergent behaviors with certain probabilities when different
values of ϕ1 and ϕ2 are used.

In [85], Kadirkamanathan et al. recently provided a new approach to the
convergence analysis of PSO without the assumption of non-random PSO. The
analysis of stochastic particle dynamics was made feasible by representing
particle dynamics as a nonlinear feedback controlled system as formulated
by Lure [53]. The convergence analysis was carried out using the concept of
passive systems and Lyapunov stability [175]. Some conservative conditions
for convergence were derived in this study.

PSO for Multiobjective Optimization

Multiobjective optimization (MO) problems represent an important class of
real-world problems. Typically such problems involve trade-offs. For example,
a car manufacturer may wish to maximize its profit, but meanwhile also to
minimize its production cost. These objectives are typically conflicting to
each other. For example, a higher profit could increase the production cost.
Generally, there is no single optimal solution. Often the manufacturer needs to
consider many possible “trade-off” solutions before choosing the one that suits
its need. The curve or surface (for more than two objectives) describing the
optimal trade-off solutions between objectives is known as the Pareto front.
A multiobjective optimization algorithm is required to find solutions as close
as possible to the Pareto front, while maintaining a good solution diversity
along the Pareto front.

To apply PSO to multiobjective optimization problems, several issues have
to be taken into consideration:

1. How to choose pg (i.e., a leader) for each particle? The PSO needs to favor
non-dominated particles over dominated ones, and drive the population
towards different parts of the Pareto front, not just towards a single point.
This requires that particles be allocated to different leaders.

2. How to identify non-dominated particles with respect to all particles’ cur-
rent positions and personal best positions? And how to retain these solu-
tions during the search process? One strategy is to combine all particles’
personal best positions and current positions, and then extract the non-
dominated solutions from the combined population.

3. How to maintain particle diversity so that a set of well-distributed solu-
tions can be found along the Pareto front? Some classic niching methods
(e.g., crowding or sharing) can be adopted for this purpose.

The first PSO for solving multiobjective optimization was proposed by
Moore and Chapman in 1999 [126]. An lbest PSO was used, and pg was
chosen from a local neighborhood using a ring topology. All personal best
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positions were kept in an archive. At each particle update, the current posi-
tion is compared with solutions in this archive to see if the current position
represents a non-dominated solution. The archive is updated at each iteration
to ensure it contains only non-dominated solutions.

Interestingly it was not until 2002 that the next publication on PSO for
multiobjective optimization appeared. In [34], Coello and Lechuga proposed
MOPSO (Multiobjective PSO) which uses an external archive to store non-
dominated solutions. The diversity of solutions is maintained by keeping only
one solution within each hypercube which is predefined by a user in the ob-
jective space. In [137], Parsopoulos and Vrahatis adopted a more traditional
weighted-sum approach. However, by using gradually changing weights, their
approach was able to find a diverse set of solutions along the Pareto front. In
[58], Fieldsend and Singh proposed a PSO using a dominated tree structure to
store non-dominated solutions found. The selection of leaders was also based
on this structure. To maintain a better diversity, a turbulence operator was
adopted to function as a ‘mutation’ operator in order to perturb the velocity
value of a particle.

With the aim of increasing the efficiency of extracting non-dominated solu-
tions from a swarm, Li proposed NSPSO (Non-dominated Sorting PSO) [100],
which follows the principal idea of the well-known NSGA II algorithm [39].
In NSPSO, instead of comparing solely a particle’s personal best with its po-
tential offspring, all particles’ personal best positions and offspring are first
combined to form a temporary population. After this, domination comparisons
for all individuals in this temporary population are carried out. This approach
will ensure more non-dominated solutions can be discovered through the dom-
ination comparison operations than the above-mentioned multiobjective PSO
algorithms.

Many more multiobjective PSO variants have been proposed in recent
years. A survey conducted by Sierra and Coello in 2006 shows that there are
currently 25 different PSO algorithms for handling multiobjective optimiza-
tion problems. Interested readers should refer to [155] for more information
on these different approaches.

PSO for Dynamic Optimization

Many real-world optimization problems are dynamic and require optimization
algorithms capable of adapting to the changing optima over time. For exam-
ple, traffic conditions in a city change dynamically and continuously. What
might be regarded as an optimal route at one time might not be optimal
the next minute. In contrast to optimization towards a static optimum, in a
dynamic environment the goal is to track as closely as possible the dynami-
cally changing optima. Figure 6 shows an example of a three-peak dynamic
environment.

A defining characteristic of PSO is its fast convergent behavior and in-
herent adaptability [92]. Particles can adaptively adjust their positions based
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Fig. 6. Three-peak dynamic environment, before and after movement of optima.
Note that the small peak to the right of the figure becomes hidden and that the
highest point switches optimum

on their dynamic interactions with other particles in the population. This
makes PSO especially appealing as a potential solution to dynamic optimiza-
tion problems. Several studies have suggested various approaches to applying
PSO to solve dynamic optimization problems [28, 29, 56, 82, 103, 11, 12, 135].
These studies showed that the original PSO must be adapted to meet the addi-
tional challenges presented by dynamic optimization problems. In particular,
the following questions need to be addressed:

1. How do we detect a change that has actually occurred?
2. Which response strategies are appropriate to use once a change is de-

tected?
3. How do we handle the issue of ‘out-of-date’ memory as particles’ personal

best positions become invalid once the environment has changed?
4. How do we handle the trade-off issue between convergence (in order to

locate optima) and diversity (in order to relocate changed optima)?

One of the early works on using PSO for dynamic optimization was by
Eberhart and Shi in [56], where they used an inertia-weighted PSO to track the
optimum of a three-dimensional unimodal parabolic function which changes
its maxima every 100 iterations. It was found under certain circumstances that
the PSO’s performance was comparable to or better than that of previously
published evolutionary algorithms.

For detection, Carlisle and Dozier used a sentry particle which is randomly
chosen at each iteration [28]. The sentry particle gets evaluated before each
iteration and compares its fitness with its previous fitness value. If the two
values are different, indicating the environment has changed, then the whole
population gets alerted and several possible responses can then be triggered.
A simple strategy was also proposed by Hu and Eberhart to re-evaluate pg

and a second-best particle to detect if a change has occurred [82].
Various response strategies have been proposed. To deal with the issue

of ‘out-of-date’ memory as the environment changes, Carlisle and Dozier pro-
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posed to periodically replace all personal best positions by their corresponding
current positions when a change has been detected [29]. This allows particles
to forget their past experience and use only up-to-date knowledge about the
new environment. Hu and Eberhart studied the effects of re-randomizing var-
ious proportions of the swarm to maintain some degree of diversity in order
to better track the optima after a change [82]. However, this approach suffers
from possible information loss since the re-randomized portion of the pop-
ulation does not retain any information that might be useful from the past
iterations.

In order to maintain better particle diversity throughout a run, Blackwell
and Bentley introduced charged swarms where mutually repelling charged
particles orbit a nucleus of neutral particles (conventional PSO particles) [9].
Whereas the charged particles allow the swarm to better adapt to changes in
the environment, the neutral particles play the role of continuing to converge
towards the optimum.

Inspired by multi-population EA approaches such as the self-organizing
scouts [24], Blackwell and Branke proposed an interacting multi-swarm PSO
as a further improvement to the charged swarms [11]. The multi-swarm PSO
aims at maintaining multiple swarm populations on different peaks. Multiple
swarms are prevented from converging to the same optimum by randomizing
the worse of two swarms that come too close. The multi-swarm PSO also re-
places the charged particles with quantum particles whose position is solely
based on a probability function centered around the swarm attractor. The re-
sulting multi-quantum swarms outperform charged and standard PSOs on the
moving peaks function. This multi-swarm approach is particularly attractive
because of its improved adaptability in a more complex multimodal dynamic
environment where multiple peaks exist and need to be tracked.

With a similar aim to locate and track multiple peaks in a dynamic envi-
ronment, Parrott and Li in [101, 135] proposed a species-based PSO (SPSO)
incorporating a speciation algorithm first proposed by Pétrowski [139]. The
SPSO uses a local “species seed” which provides the local pg to particles
whose positions are within a user-specified radius of the seed. This encour-
ages swarms to converge onto multiple local optima instead of a single global
optimum, hence developing multiple sub-populations in parallel. In addition,
the dynamic SPSO uses a parameter pmax to limit the number of particles
allowed in a species (or swarm), with the excess particles reinitialized at ran-
dom positions in the total search space. In [102], Li et al. also demonstrated
that the quantum particle model in [11] can be incorporated into SPSO to
improve its optima-tracking performance for the moving peaks problem [24].

In another work [84], Janson and Middendorf proposed a PSO using a
dynamic and hierarchical neighborhood structure to handle dynamic opti-
mization problems. They demonstrated that such a structure is useful for
maintaining some particle diversity in a dynamic environment.



70 C. Blum and X. Li

PSO for Constraint Handling

Many real-world problems require an optimization algorithm to find solutions
that satisfy a certain number of constraints. The most common approach for
solving constrained problems is the use of a penalty function, where the con-
strained problem is transformed into an unconstrained one, by penalizing the
constraints and creating a single objective function. Parsopoulos and Vrahatis
proposed a PSO where non-stationary penalty functions are used [136]. The
penalty value is dynamically modified during a run. This method is prob-
lem dependent; however its results are generally superior to those obtained
through stationary functions. In Toscano and Coello’s PSO algorithm [141],
if both particles compared are infeasible, then the particle that has the lowest
value in its total violation of constraints wins. One major disadvantage of
using penalty functions, in which case all constraints must be combined into
a single objective function (this is also called the weighted-sum approach),
is that a user must specify a weight coefficient for each constraint. However,
finding optimal weight coefficients is no easy task. A preferred approach is a
multiobjective one where the concept of “dominance” can be used to identify
better solutions which are non-dominated solutions with respect to the cur-
rent population. The merit of this multiobjective approach is that the user is
no longer required to specify any weight coefficient.

Another useful technique as described by Clerc is “confinement by di-
chotomy” [32], which makes use of an iterative procedure to find points that
are close to the boundaries defined by constraints. Both the dichotomy and
multiobjective methods are general enough that they are applicable to most
constrained optimization problems.

4 Further Examples of Swarm Intelligence in
Optimization

ACO and PSO are two very successful examples of swarm intelligence, yet
there are many more applications based on SI principles. Some representative
examples are given in the following.

4.1 Applications Inspired by the Division of Labour

Algorithms based on the division of labour in ant colonies and wasp colonies
are an important example of the use of swarm intelligence principles in tech-
nical applications. Much of the relevant works go back to the study of Wil-
son [178], who showed that the concept of division of labour in colonies of
ants from the Pheidole genus allows the colony to adapt to changing demands.
Workers in these colonies are generally divided into two groups: Small minors
and larger majors. The minors are mostly doing quotidian tasks, whereas the
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majors do seed milling, storing of abdominal food, or defense tasks. By exper-
imentally reducing the number of minors, Wilson observed that some of the
majors switched to tasks usually fulfilled by minors. The division of labour
was later modelled by Theraulaz et al. [167] and Bonabeau et al. [22] by means
of response threshold models. The model permits a set of threshold values for
each individual, one threshold value for each type of task. A threshold value,
which may be fixed or dynamically changing over time, can be interpreted as
the degree of specialization for the respective task. Furthermore, each task
emits a stimulus in order to attract the attention of the individuals, which—
depending on the stimulus and the corresponding threshold value—decide
whether to accept or to decline the task.

The above-mentioned response threshold models inspired several techni-
cal applications. Campos et al. [27], Cicirello and Smith [31], and Nouyan et
al. [129] deal with a static, or a dynamic task allocation problem where trucks
have to be painted in a number of painting booths. Another application con-
cerns media streaming in peer-to-peer networks. Here, a peer must adapt to
changes in the supply and demand of media streams. For this purpose, Sasabe
et al. [151] propose a novel caching algorithm based on a response threshold
model. In [181], Yu and Ram propose a multi-agent system for the schedul-
ing of dynamic job shops with flexible routing and sequence-dependent setups
based on the division of labour in social insects. Finally, Merkle et al. [119]
use a response threshold model for the self-organized task allocation for com-
puting systems with reconfigurable components.

4.2 Ant-Based Clustering and Sorting

In 1991 Deneubourg et al. [43] proposed a model to describe the clustering as
well as the sorting behavior of ants. Here, clustering refers to the gathering
of items in order to form heaps. This happens, for example, when ants of the
species Pheidole pallidula cluster the bodies of dead nest mates (also known
as cemetery formation). Sorting, on the other hand, refers to the spatial ar-
rangement of different objects according to their properties, a behavior which
can be observed, for example, in nests of the species Leptothorax unifasciatus.
Ants of this species compactly cluster eggs and microlarvae at the center of
the brood area, whereas the largest larvae are placed at the periphery of the
brood area. In computer simulations in [43] ants were modelled as agents ran-
domly moving in their environment in which items were initially scattered.
Agents were able to pick up items, to transport them, and to drop them. The
probabilities for these actions were derived from the distribution of items in
the agents’ local neighborhood. For example, items that are isolated had a
higher probability of being picked up. As a result, a clustering and sorting of
items in the agents environment was obtained.
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Mostly based on the above mentioned model by Deneubourg et al., several
algorithms for clustering and sorting appeared in the literature. The first one
was an algorithm proposed in [108] that extended the original model in order
to be able to handle numerical data. Later papers deal with the models’ use for
the two-dimensional visualization of document collections such as Web data
(see, for example, [77]) and for graph partitioning (see, for example, [97]).

4.3 Other Applications

Recently, research on swarm robotics has taken much inspiration from swarm
intelligence. For example, the path finding and orientation skills of the desert
ant Cataglyphis were used as an archetype for building a robot orientation
unit [98]. Models for the division of labor between members of an ant colony
were used to regulate the joint work of robots (see, for example, [1]). In [96]
the collective transport of ants inspired the design of controllers of robots
for doing coordinated work. More detailed and up-to-date information can be
found in Chap. 3 of this book.
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A. Martinoli, R. Poli, and T. Stützle, editors, Ant Colony Optimization and
Swarm Intelligence – Proceedings of ANTS 2006 – Fifth International Work-
shop, volume 4150 of Lecture Notes in Computer Science, pages 247–258.
Springer, Berlin, Germany, 2006.
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125. N. Monmarché, G. Venturini, and M. Slimane. On how Pachycondyla apicalis
ants suggest a new search algorithm. Future Generation Computer Systems,
16:937–946, 2000.

126. J. Moore and R. Chapman. Application of particle swarm to multiobjective
optimization. Department of Computer Science and Software Engineering,
Auburn University, 1999.

127. J. D. Moss and C. G. Johnson. An ant colony algorithm for multiple sequence
alignment in bioinformatics. In D. W. Pearson, N. C. Steele, and R. F. Albrecht,
editors, Artificial Neural Networks and Genetic Algorithms, pages 182–186.
Springer, Berlin, Germany, 2003.

128. G. L. Nemhauser and A. L. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

129. S. Nouyan, R. Ghizzioli, M. Birattari, and M. Dorigo. An insect-based algo-
rithm for the dynamic task allocation problem. Künstliche Intelligenz, 4:25–31,
2005.

130. G. Onwubolu and M. Clerc. Optimal path for automated drilling operations
by a new heuristic approach using particle swarm optimization. International
Journal of Production Research, 42(3/01):473–491, February 2004.

131. P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26:297–307, 1988.

132. E. Ozcan and C.K. Mohan. Analysis of a simple particle swarm optimization
system. In Intelligent Engineering Systems Through Artificial Neural Networks,
pages 253–258, 1998.

133. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization—
Algorithms and Complexity. Dover Publications, Inc., New York, NY, 1982.

134. R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an ant colony
optimization algorithm. IEEE Transactions on Evolutionary Computation,
6(4):321–332, 2002.



82 C. Blum and X. Li

135. D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a
particle swarm model using speciation. IEEE Transactions on Evolutionary
Computation, 10(4):440–458, August 2006.

136. K. Parsopoulos and M. Vrahatis. Particle swarm optimization method for
constrained optimization problems. Intelligent Technologies—Theory and Ap-
plications: New Trends in Intelligent Technologies, 76:214–220, 2002.

137. K. Parsopoulos and M. Vrahatis. Particle swarm optimization method in mul-
tiobjective problems. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC 2002), pages 603–607. Madrid, Spain, ACM Press, 2002.

138. K. Parsopoulos and M. Vrahatis. On the computation of all global minimiz-
ers through particle swarm optimization. IEEE Transactions on Evolutionary
Computation, 8(3):211–224, June 2004.

139. A. Pétrowski. A clearing procedure as a niching method for genetic algorithms.
In Proceedings of the 3rd IEEE International Conference on Evolutionary Com-
putation, pages 798–803, 1996.

140. G. Pulido and C. Coello Coello. A constraint-handling mechanism for particle
swarm optimization. In Proc. of the 2004 IEEE Congress on Evolutionary
Computation, pages 1396–1403. IEEE Press, 2004.

141. G. T. Pulido and C. Coello Coello. A constraint-handling mechanism for par-
ticle swarm optimization. In Proceedings of the 2004 IEEE Congress on Evo-
lutionary Computation, pages 1396–1403, Portland, Oregon, 20-23 June 2004.
IEEE Press.

142. A. P. Engelbrecht, R. Brits and F. van den Bergh. A niching particle swarm
optimizer. In Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning 2002 (SEAL 2002), pages 692–696, 2002.

143. K. Rameshkumar, R. Suresh, and K. Mohanasundaram. Discrete particle
swarm optimization (DPSO) algorithm for permutation flowshop scheduling
to minimize makespan. In First International Conference of Advances in Nat-
ural Computation, pages 572–581, 2005.

144. C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Prob-
lems. John Wiley & Sons, Inc., New York, NY, 1993.

145. M. Reimann, K. Doerner, and R. F. Hartl. D-ants: Savings based ants divide
and conquer the vehicle routing problems. Computers & Operations Research,
31(4):563–591, 2004.

146. C.W. Reynolds. Flocks, herds and schools: a distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.
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164. T. Stützle and H. H. Hoos. MAX -MIN Ant System. Future Generation
Computer Systems, 16(8):889–914, 2000.

165. P.N. Suganthan. Particle swarm optimiser with neighbourhood operator. In
Congress on Evolutionary Computation (CEC 1999), pages 1958–1962, Wash-
ington, USA, 1999.



84 C. Blum and X. Li

166. T.-Y. Sun, S.-T. Hsieh, H.-M. Wang, and C.-W. Lin. Floorplanning based on
particle swarm optimization. In IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures 2006, pages 5–10. IEEE Press,
2006.

167. G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg. Response threshold re-
inforcement and division of labour in insect societies. Proceedings: Biological
Sciences, 265(1393):327–332, 1998.

168. I. C. Trelea. The particle swarm optimization algorithm: convergence analysis
and parameter selection, 2003.

169. R. Unger and J. Moult. Finding the lowest free-energy conformation of a pro-
tein is an NP -hard problem: Proofs and implications. Bulletin of Mathematical
Biology, 55(6):1183–1198, 1993.

170. F. van den Bergh. Analysis of Particle Swarm Optimizers. PhD thesis, De-
partment of Computer Science, University of Pretoria, Pretoria, South Africa,
2002.

171. F. van den Bergh and A.P. Engelbrecht. A cooperative approach to particle
swarm optimization. IEEE Trans. Evol. Compu., 8:225–239, Jun. 2004.

172. F. van den Bergh and A.P. Engelbrecht. A study of particle swarm optimization
particle trajectories. Information Sciences, 176:937–971, 2006.

173. K. Veeramachaneni, T. Peram, C. Mohan, and L. Osadciw. Optimization
using particle swarm with near neighbor interactions. In Proc. of Genetic and
Evolutionary Computation Conference, pages 110 – 121, Chicago, Illinois, 2003.

174. G. K. Venayagamoorthy. Optimal control parameters for a UPFC in a multima-
chine using PSO. In Proceedings of the 13th International Intelligent Systems
Application to Power Systems 2005, pages 488–493, 2005.

175. M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs,
NJ, 1993.

176. M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, and A. Elmaghraby. An
approach to multimodal biomedical image registration utilizing particle swarm
optimization. IEEE Transactions on Evolutionary Computation, 8(3):289–301,
June 2004.

177. C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and
refinement algorithm. SIAM Journal on Scientific Computing, 22(1):63–80,
2000.

178. E. O. Wilson. The relation between caste ratios and division of labour in the
ant genus phedoile. Behavioral Ecology and Sociobiology, 16(1):89–98, 1984.

179. X. Xie, W. Zhang, and Z. Yang. A dissipative particle swarm optimization. In
Proc. Congr. Evol. Comput. 2002 (CEC 2002), pages 1456–1461. IEEE Press,
2002.

180. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A parti-
cle swarm optimization for reactive power and voltage control considering volt-
age security assessment. IEEE Transactions on Power Systems, 15(4):1232–
1239, November 2001.

181. X. Yu and B. Ram. Bio-inspired scheduling for dynamic job shops with flexible
routing and sequence-dependent setups. International Journal of Production
Research, 44(22):4793–4813, 2006.

182. W. Zha and G. K. Venayagamoorthy. Neural networks based non-uniform
scalar quantizer design with particle swarm optimization. In Proceedings 2005
IEEE Swarm Intelligence Symposium (SIS 2005), pages 143–148. IEEE Press,
2005.



Swarm Intelligence in Optimization 85

183. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for
combinatorial optimization: A critical survey. Annals of Operations Research,
131(1–4):373–395, 2004.



Swarm Robotics
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Summary. Swarm robotics is a novel approach to the coordination of large numbers
of robots and has emerged as the application of swarm intelligence to multi-robot
systems. Different from other swarm intelligence studies, swarm robotics puts em-
phases on the physical embodiment of individuals and realistic interactions among
the individuals and between the individuals and the environment. In this chapter,
we present a brief review of this new approach. We first present its definition, discuss
the main motivations behind the approach, as well as its distinguishing characteris-
tics and major coordination mechanisms. Then we present a brief review of swarm
robotics research along four axes; namely design, modelling and analysis, robots and
problems.

1 Introduction

Swarm robotics represents a novel approach to the coordination of large num-
bers of robots whose main inspiration stems from the observation of social
insects [10, 9]. These insects, such as ants, wasps and termites, are known to
coordinate their behaviors to accomplish tasks that are beyond the capabil-
ities of a single individual; ants can carry large preys to their nest; termites
can build large mounds from mud within which a desired level of temperature
and moisture is maintained [5]. The emergence of such synchronized behavior
at the system level is rather impressive for researchers working on multi-robot
systems, since it emerges despite the individuals being relatively incapable,
despite the lack of centralized coordination and despite the simplicity of in-
teractions.

The term swarm intelligence [4] was originally conceived as a “buzz word”
by Beni in the 1980s [3] to denote a class of cellular robotic systems [2]. Later,
the term moved on to cover a wide range of studies from optimization to social
insect studies, losing its robotics context in the meantime. Recently the term
swarm robotics has started to be used as the application of swarm intelligence
to physically embodied systems.
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2 What Is Swarm Robotics?

Given the plethora of terms being used for describing different approaches used
in multi-robot systems, such as “distributed robotics” or “collective robotics,”
the distinguishing characteristics of swarm robotics from the rest need to be
clarified. This concern was first explicitly stated in [10] and a definition was
provided as follows.

Definition 1. “Swarm robotics is the study of how a large number of relatively
simple physically embodied agents can be designed such that a desired collective
behavior emerges from the local interactions among the agents and between the
agents and the environment.”[9]

2.1 System-Level Properties

The system-level operation of a swarm robotic system should exhibit three
functional properties that are observed in natural swarms and remain as de-
sirable properties of multi-robot systems.

• Robustness. The swarm robotic system should be able to operate despite
disturbances from the environment or the malfunction of its individuals. A
number of factors can be observed in social insects behind the robustness
of their operation. First, swarms are inherently redundant systems; the loss
of an individual can be immediately compensated by another one. Second,
coordination is decentralized and therefore the destruction of a particular
part of the swarm is unlikely to stop its operation. Third, the individuals
that make up the swarm are relatively simple, making them less prone to
failure. Fourth, sensing is distributed; hence the system is robust against
the local perturbances in the environment.

• Flexibility. The individuals of a swarm should be able to coordinate their
behaviors to tackle tasks of different nature. For instance, the individuals
in an ant colony can collectively find the shortest path to a food source or
carry a large prey through the utilization of different coordination strate-
gies.

• Scalability. The swarm should be able to operate under a wide range of
group sizes and support a large number of individuals without impact-
ing performance considerably. That is, the coordination mechanisms and
strategies to be developed for swarm robotic systems should ensure the
operation of the swarm under varying swarm sizes.

2.2 Distinguishing Characteristics

We will now summarize the main distinguishing characteristics of swarm
robotics research (see [9] for a full discussion). First, the research should be
relevant to the coordination of a swarm of robots. That is, the individuals
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should have a physical embodiment, be situated, and be able to physically in-
teract with their environment. Moreover, the coordination mechanisms being
studied should promise to be scalable for a wide range of swarm sizes.

Second, the robotic system being studied should be rather homogeneous.
That is, the individuals that makes up the swarm should be rather identical,
at least at the level of interactions. Coordination strategies developed for
heterogeneous multi-robot systems, which consist of individuals that differ
in their interactions due to their physical embodiment or their behavioral
control, fall outside of the swarm robotics approach.

Third, the individuals should be relatively simple. The simplicity criterion
in the definition does not directly refer to the hardware and software com-
plexity of the robots, but is rather meant to emphasize the limitations in their
individual capabilities relative to the task. The members of the swarm system
should be relatively incapable or inefficient on their own with respect to the
task at hand. That is, either (i) the task should be hard or impossible to be
carried out by a single robot, and the cooperation of a group of robots should
be essential, or (ii) the deployment of a group of robots should improve the
performance and robustness of the handling of the task.

Fourth, the individuals should have local interaction abilities. This con-
straint ensures that the coordination between the robots is distributed, and
that it is more likely to scale with the size of the swarm. Mechanisms that
rely on global interaction capabilities are likely to be bounded by the band-
width and the range of communication channel and may create unscalable
coordination mechanisms.

2.3 Coordination Mechanisms

Studies in physical and biological systems have revealed that there are a num-
ber of coordination mechanisms that are at work in natural systems which can
act as sources of inspiration for coordinating swarm robotic systems. Two of
the main coordination mechanisms are: self-organization and stigmergy.

Self-organization, defined as “a process in which patterns at the global
level of a system emerge solely from numerous interactions among the lower-
level components of the system” [5], is common in natural systems. Studies
of self-organization in natural systems show that an interplay of positive and
negative feedback of local interactions among the individuals is essential [4]. In
these systems, positive feedback is typically generated through autocatalytic
behaviors; that is the change inflicted in the swarm-environment system by
the execution of a behavior increases the triggering of the very same behavior.
Such a positive feedback cycle is then counterbalanced by a negative feedback
mechanism, which typically stems from a “depletion of physical resources”[4].
In addition to these mechanisms, self-organization also depends on the exis-
tence of randomness and multiple interactions within the system.

Studies of self-organization in natural systems often develop models that
are built with simplified interactions in the environment and abstract behav-
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ioral mechanisms in individuals. The self-organization models of social insects
and animals have already been used as inspiration sources since, in a sense,
swarm robotics can be considered as the engineering and utilization of self-
organization in physically embodied swarms.

Stigmergy, defined as indirect communication of individuals through envi-
ronment, was first proposed by Grasse [13] to explain the coordination mech-
anisms behind the building of nests in termites. Stigmergic communication
is common in many social insects; ants are known to lay pheromones on the
ground to mark the paths to food sources and these pheromones act as at-
tractants to be followed by ants. Stigmergy is of interest to swarm robotics
since it provides a communication mechanism that is local, distributed and
scalable.

3 Research Directions

During the last 4-5 years, interest in swarm robotics has been on the rise.
The growing interest in this new approach is being fueled by the advances
in mechatronics and other technologies, such as MEMS, which have started
to shrink the size and the cost of robots for mass production and opened
the way towards the deployment of large-scale swarm robotic systems in real-
world applications. In the discussion below, we will provide a brief review of
the swarm robotics studies in four categories; namely design, modelling and
analysis, robots, and problems.

3.1 Design

The main problem of a swarm robotic system can be stated as follows: How
should one design individuals, both in terms of their physical embodiment
as well as their behavioral control, such that a desired swarm-level behavior
emerges from the interactions among the individuals as well as between the
individuals and the environment? This goal, which can also be considered as
the “engineering of self-organization” in multi-robot systems, is a challeng-
ing task that is difficult, if not impossible, to solve in general terms. The
studies within this category can be grouped into two: ad-hoc and principled
approaches.

In ad-hoc approaches, behaviors of individual robots are designed manually
to achieve a desired swarm-level behavior. In this approach, usually, though
not always, behaviors of social insects are usually adapted to the robots at
hand. This process implicitly assumes that the behaviors used as inspiration
are observed at a certain abstraction level that captures essential parameters
that need to be adapted to robots and should yet reproduce similar swarm-
level behaviors.

In principled approaches, instead of designing a specific swarm-level be-
havior, a general methodology through which desired swarm-level behaviors
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can be used to build necessary individual behaviors is proposed or utilized.
One such approach is the use of artificial evolution. Evolutionary methods
have been successfully used to develop behaviors within the Swarm-bots
project [12]. In particular, the SwarmBot3D [22], a physics-based simulation
environment for simulating the Swarm-bots robotic system at different levels
of complexity, was used. In most of these studies, simple feedforward or recur-
rent multi-layer perceptrons were used to encode the behaviors. The evolved
behaviors in the simulation environment were later successfully transferred to
the physical robot system.

3.2 Modelling and Analysis

The behavior of a swarm robotic system at the system level emerges from
the interactions of its individuals. These interactions, determined by the be-
haviors of the individuals and the environment, are inherently probabilistic.
As a consequence of this, the behavioral outcome of swarm robotic systems
is not straightforward and modelling and analysis of the swarm is desirable
for at least two purposes. First, for a desired task to be accomplished, and
for a proposed behavioral design at the individual level, one needs to obtain
guarantees for system-level performance. Second, in most ad-hoc approaches,
although the overall composition of individual behaviors may be known, the
optimal values of the parameters may remain unknown. Systematic experi-
ments with physical robots are often difficult to perform. Moreover, they can
provide only limited guarantees and little insight into the operation of the
system. The models that can be used towards this end can be reviewed in
three groups. In sensor-based modelling, the sensing and actuation of the in-
dividual robots as well as robot-robot and robot-environment interactions are
modelled. This kind of modelling, mostly used for building realistic simulators
of robotic systems, allows us to conduct experiments in simulation and yet
to obtain results that are in agreement with the ones obtained from physical
robots. Although this type of modelling is common in building robotics sim-
ulators [21], models to be used in swarm robotics require more fidelity at the
level of inter-robot interactions. However, the building of these models is sub-
ject to the trade-off between realism and simplicity – models and interactions
need to be realistic to be useful, and, yet, at the same time they must be as
simple as possible for speed.

One simulation platform built with all these issues in mind is Swarm-
bot3D [22], a physics-based simulator specifically developed for the swarm-bot
robotic system. The simulator contained models of the s-bot robot at different
levels of complexity and was verified against the physical robot. The simulator
was used both to generate behaviors for different problems using evolutionary
methods (see the previous subsection) as well as to systematically analyze the
resulting system-level behaviors. These simulations, even at the lowest level
of complexity, proved to be computationally intensive, and a system that can
parallelize the simulations over a cluster of computers was developed in [29].
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This type of modelling can be used as a constructive means to design behav-
iors, and provide insight into the behavior of the swarm through systematic
experimentation.

In microscopic modelling, similar to the sensor-based approach, modelling
is carried out at the individual level. The states of the individuals and the
transitions among these states are modelled analytically. Such a modelling
takes into account the characteristics of the environment, the physical em-
bodiment and the behavioral control of the robots. Through such modelling,
instead of simulating the individual interactions within the system, the model
evolves the states of the individuals in time.

An excellent example of this type of modelling in swarm robotics can be
found in [16]. The authors studied the stick pulling problem, in which two
robots have to collaborate to pull sticks. They proposed a probabilistic model
to represent the changes in the states of the robots. The model, which is
essentially a set of rate equations, was built using the physical characteristics
of the robots, such as the body shape and size of the robot as well as the
placement and characteristics of the sensors, and the environment. It also took
into account the behavioral design of the individual robots and used it as a
basis for the transitions among the different states. Microscopic modelling was
reported to be much faster than the sensor-based modelling and yet provided
means to link the behavioral parameters to the system-level outcomes.

In macroscopic modelling, unlike in the previous two approaches, modelling
is done at the swarm level. This type of modelling, in which the behavior of
some average quantities that represent the state of the system is represented, is
common in physics and chemistry. Contrary to sensor-based and microscopic
models, macroscopic models need to be solved only once to obtain the steady
state of the model. This allows one to find the optimum behavioral parameters
without conducting any systematic experiments with the robots and provides
a theoretical guarantee over the system-level behavior of the swarm. One
example of such modelling can be found in [19]. In this study, an analytical
macroscopic model of the stick-pulling problem, mentioned above, is proposed.
In this model, the number of robots in a certain state as well as the number
of unextracted sticks are used to represent the state of the system and the
rate equations describing the change in them are derived. Using such a model,
the authors are able to determine optimal parameters for the behaviors of the
individual robots without making any systematic experiments.

3.3 Robots

One major research direction has been the development of physical swarm
robotic systems since the building of a swarm robotic system takes more than
gathering a number of copies of a generic robot platform. All the studies
towards this end, have focused on developing mobile robots that are aimed
to provide a research platform and are not intended for real-world operation.
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Below we will discuss the extra requirements (or wish list from the researchers’
viewpoint) expected from robots that would be used in swarm robotic systems.

• Sensing and Signalling. The main emphasis in swarm robotics is the
interaction among the robots as well as the interaction of the robots with
their environment, resulting in extra constraints for the robots to be used.
In particular, (i) the interference among the sensing systems of the robots
and the effect of environmental factors on them should be minimal, (ii) the
robots should be able to distinguish other kin-robots (preferably as easily
as proximity sensing), and (iii) the robots should be able to leave “marks”
in the environment and be able to sense them (i.e. stigmergy). Further-
more, it is preferable that the robots are equipped with (or extendable
to) some form of generic sensing capability to allow the researcher to test
novel sensing strategies.

• Communication. Unlike in stand-alone robotic systems, communication
by plugging cables into the robots is no longer a feasible option. Therefore
the robots have to support wireless communication (i) between a console
and the robots, to allow easier monitoring and debugging of algorithms
on individual robots, (ii) among robots such as in the form of ad-hoc
networks. The robots should also be programmable in parallel through a
wireless communication channel since control algorithms are mostly the
same for all the robots and programming the swarm as a whole would be
a big time saver.

• Physical Interaction. The robots should be able to physically interact
with each other and the environment since this is required by possible
tasks such as self-assembly and self-organized construction.

• Power. The robots should have a long battery life. In most studies, the
swarm may need to operate for a period that is long enough for the col-
lective behavior to emerge, and the goal to be reached.

• Cost. The robots should be as cheap as possible, since, unlike stand-alone
robots, they will be sold at least in groups of tens.

• Size. Size does matter in swarm robotic systems. The robots should be
small enough not to make it necessary to increase the size of the test arena
when experimenting with the system, and yet big enough not to limit the
expandability of the robot or increase the cost of the swarm robots due to
miniaturization in components.

• Simulation. Swarm robotic systems require realistic simulators. They are
essential for speeding up the development of new control algorithms. Such
simulators need to model the interactions between the robots as well as
the interactions of the robots with their environment in a realistic way
that is also verified against the physical robots.

Developing a single robot platform that would realize the whole wish list is a
difficult, if not impossible, challenge. The design choices made regarding one
requirement, such as size, pose additional constraints towards the reaching
of other requirements, such as power and communication. In the rest of this
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section, we review some of the existing mobile robot platforms that are devel-
oped (or can be used) for conducting swarm robotics research and evaluate
them based on the wish list stated above.

• Alice [6] is a small rectangular mobile robot with dimensions 22× 21 mm.
The robot, driven by two high efficiency SWATCH motors for locomotion,
hosts a PIC16F877 microcontroller with 8K words flash EPROM program
memory. Alice has four IR proximity sensors for obstacle detection and a
short-range robot-to-robot communication module as well as an IR receiver
for remote control. There are also a wide variety of modules, such as a
linear camera, RF, or gripper modules, for extending its capabilities. Ten
hours of autonomy are reported with two button batteries and 20 hours of
autonomy is achieved with an additional LiPoly battery. The robot model
is available in the Webots simulator.

• e-Puck [8] is a circular robot with a diameter of 70 mm. The robot, driven
by two stepper motors for locomotion, hosts a dsPIC 30F6014A microcon-
troller with 144 KB program memory and 8 KB of RAM. ePuck has eight
IR sensors used for measuring proximity to objects as well as ambient light.
It has a speaker for audible feedback and three directional microphones
which can be used for sound localization and a three-axis accelerometer.
The robot has a color camera, a number of LEDs to signal or show its state
and Bluetooth as the main wireless communication channel. The robots
can be programmed via this Bluetooth module. e-Puck also provides an
expansion bus and has optional ZigBee communication modules. Three
hours of autonomy are reported using a 5 Wh Li-Ion battery. The robot
model is available in the Webots simulator.

• Jasmine [23] is a small rectangular robot with dimensions 23 × 23 mm.
The robot, driven by two small gear head motors for locomotion, has six
IR sensors for proximity sensing and proximal communication. There is
one powerful IR LED for detailed analysis of an object of interest and an
IR communication module with host. Jasmine III has a modular design in
which different sensing modules such as an ambient light sensor, a color
sensor and different locomotion modules can be utilized. Two hours of
autonomy are reported with LiPoly batteries. A simulator called LaRoSim
was built for conducting experiments in simulation.

• s-bot [22] has a circular shape having a diameter of 116 mm. The robots
have a locomotion sub-system consisting of both wheels and tracks which
are driven by two DC gear head motors. s-bots are equipped with two grip-
pers for studying problems such as self-assembly and coordinated move-
ment. The robots have sensors of different modalities, including 15 IR
proximity sensors for obstacle detection, four IR sensors below the robot
facing the ground, torque sensors on the wheels, a force sensor between
the base and the wheels, a three-axis accelerometer, an omni-directional
camera and eight RGB LEDs for messaging between the s-bots. The robot
is equipped with a 400 MHz custom XScale CPU board, 32 MB of flash
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memory and 64 MB of RAM. A Wi-Fi module is used for wireless commu-
nication. The robots have one hour battery life (Li-Ion). A custom-made
simulator called SwarmBot3D is developed to simulate s-bots at different
levels of complexity.

• Swarmbot [28] is a square-shaped robot with dimensions 130×130 mm. It
has four wheels on each side driven by two DC gear head motors. The robot
is equipped with an ARM Thumb CPU, an FPGA, eight bump sensors,
four light sensors and a camera. The Swarmbot uses ISIS, an IR system
that can sense the range, bearing and orientation of other neighboring
robots. Additional modules are linear CCD, magnetic food and swarm-cam
emitters which can be utilized on demand. There is an RF communication
unit for debugging and programming purposes. The battery life of the
robots is not reported.

• Centibots [25] are modified versions of Pioneer 2-AT and Amigobots. An
inertial navigation system to estimate coordinates of the robots, a SICK
laser range finder for map building and a CCD camera used to extend
the sensing capabilities of the robots. An on-board computer, USB web
cam for intruder and object-of-interest detection are added to Amigobots.
There is a Wi-Fi wireless ad-hoc network between robots. An autonomy of
three to six hours is reported for Pioneers and two hours for Amigobots.

• Kobot [34] is a circular mobile robot platform having a diameter of 120
mm. Two high-quality gear head DC motors are used for locomotion.
Kobot has a modulated IR system that can provide proximity readings
from objects and distinguish robots from obstacles. The sensing system,
which uses modulated IR signals, is robust against environmental lighting
conditions and minimizes interference among robots. Kobots use the IEEE
802.15.4/ZigBee protocol as wireless communication channel. Through this
channel, the robots in a swarm can be programmed in parallel. Ten hours
of battery life is reported with LiPoly batteries. A custom-made physics-
based simulator is available.

3.4 Problems

So far, swarm robotics research is mostly confined to the development of proof-
of-concept studies in simulators or robotic systems operating in laboratory
environments. Below we will describe some of the problems that have been
addressed in swarm robotics research and describe some of the exemplary
studies addressing them.

• Aggregation. Self-organized aggregation, the grouping of individuals of a
swarm into a cluster without using any environmental clues, is a common
behavior observed in organisms ranging from bacteria to social insects
and mammals. In swarm robotic systems it can be considered as one of
the fundamental behaviors that can act as a precursor to other behaviors
such as flocking and self-assembly. In [11, 30], aggregation behaviors were
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developed for myopic robots, robots that can perceive only a small part
of the whole environment, confined to a large arena, using evolutionary
approaches as well as a probabilistic controller inspired by social insects.

• Dispersion. Self-organized dispersion can be considered as the opposite
of aggregation and is of interest in surveillance scenarios. In this problem
(see, for example, [27, 26, 28]) the challenge is to obtain uniform spreading
of a swarm of robots in a space, maximizing the area covered yet remaining
connected through some form of communication channel.

• Foraging. This problem is inspired by the behavior of ants which search
for food sources distributed around their nest. In this problem, the chal-
lenge is to find the optimum search strategies that maximize the ratio of
returned food to the resources committed (such as the number of indi-
viduals performing foraging or signalling strategies) in an environment.
Different foraging strategies have been explored and analyzed [31, 17, 20],
and models of foraging have been developed [18, 15].

• Self-assembly. This behavior is observed in ants, where they form chains
through connecting to each other to build bridges or float-like structures to
stay above water. The problem of self-assembly can be defined as the self-
organized creation of structures through the formation of physical connec-
tions among a swarm of individual robots. Self-assembly has been studied
in physical robots [7, 24] such that a desired self-assembled structure is
formed.

• Connected Movement. This problem can be described as follows: How
can a swarm of mobile robots, physically connected to each other, coordi-
nate their movement such that the group moves smoothly in an environ-
ment and avoids environmental obstacles, such as holes, in a coordinated
way. This problem has been studied in [32, 33] as part of the Swarm-bots
project. In these studies, evolutionary approaches were used to evolve be-
haviors that can control a number of connected robots to avoid holes within
the environment. The robots, which are physically connected to each other
through their grippers, were able to sense the forces acting on their bodies
through traction sensors and were able to detect holes underneath them.

• Cooperative Transport. Ants are known to transport large preys to
their nest through coordinating their pushing and pulling actions. Such a
coordination ability is obviously valuable for swarm robotic systems since it
allows individuals to join forces, generating a combined force large enough
to pull a heavy object. This problem is partially related to the connected
movement, with the difference that it includes a passive object that needs
to be transported. In [14] a recurrent neural network controller is evolved to
obtain solitary and group transport behaviors in a physics-based simulator.
The angular position of the goal (marked with a light source) and the
distance as well as the angular position of the prey and a connection sensor
indicating whether the robot is connected to other robots or not were used
to control the motors of the robot.
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• Pattern Formation. This is a rather generic term for the problem of
how a desired geometrical pattern can be obtained and maintained by a
swarm of robots without any centralized coordination. Pattern formation
may refer either to geometric or to functional pattern formation. In geo-
metric pattern formation, the challenge is to develop behaviors such that
individuals of a swarm form a desired geometrical pattern, similar to the
formation of crystals. In this task, the environment is assumed to be uni-
form and the focus is on the use of inter-robot interactions to create such
patterns. In functional pattern formation, the pattern to be formed is dic-
tated by the environment. In natural swarms, the surrounding of a prey
by a group of predators or the formation of pulling chains by weaver ants
can be considered as examples of functional pattern formation, where the
geometrical shape or size of the patterns formed are partially determined
by the task at hand.

• Self-organized Construction. This problem can be formulated as fol-
lows: How can a number of passive objects, randomly distributed in an
environment, be clustered together by a swarm of robots. This problem,
sometimes also referred to as “aggregation,” has been one of first prob-
lems studied. Beckers et al. [1] studied how a swarm of physical robots
can cluster frisbees spread in an environment, and showed that despite
the lack of communication and signalling among robots, frisbee clusters
can be obtained.

4 Conclusion

In this chapter we provided a brief review of swarm robotics as a new approach
to the control and coordination of multi-robot systems. We stated the inspi-
ration behind this approach, the desirable properties, and the requirements
to clarify the defining characteristics of this approach in relation to other ex-
isting studies. Then we reviewed the studies in this new field, grouping them
into four categories. Due to the lack of a good review article in this rather new
field, we have opted to present the reader with an overall picture of the field
in rather general terms and pointed out some of the most interesting studies.
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Summary. In this chapter we discuss the properties and review the main instances
of network routing algorithms whose bottom-up design has been inspired by col-
lective behaviors of social insects such as ants and bees. This class of bio-inspired
routing algorithms includes a relatively large number of algorithms mostly devel-
oped during the last ten years. The characteristics inherited by the biological sys-
tems of inspiration almost naturally empower these algorithms with characteristics
such as autonomy, self-organization, adaptivity, robustness, and scalability, which
are all desirable if not necessary properties to deal with the challenges of current
and next-generation networks. In the chapter we consider different classes of wired
and wireless networks, and for each class we briefly discuss the characteristics of
the main ant- and bee-colony-inspired algorithms which can be found in literature.
We point out their distinctive features and discuss their general pros and cons in
relationship to the state of the art.

1 Introduction

The constant improvement in communication technologies and the related
dramatic increase in user demand to be connected anytime and anywhere to
both the wealth of information accessible through the Internet and other users
and communities have boosted the pervasive deployment of wireless and wired
networked systems. These systems are characterized by their being large or
very large, highly heterogeneous in terms of communication technologies, pro-
tocols, and services, and very dynamic, due to continual changes in topology,
traffic patterns, and number of active users and services. Intelligent [10] and
autonomic [72] management, control, and service provisioning in these com-
plex networks, and in the future networks resulting from their integration and
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evolution, require the definition of novel protocols and techniques for all the
architectural components of the network.

In this chapter we focus on the routing component, which is at the very core
of the functioning of every network since it implements the strategies used by
network nodes to discover and use paths to forward data or information from
sources to destinations. An effective design of the routing protocol can pro-
vide the basic support to unleash the intrinsic power of the highly pervasive,
heterogeneous, and dynamic complex networks of the next generation. In this
perspective, the routing path selection must be realized in a fully automatic
and distributed way, and it must be dynamic, to take into account the con-
stant evolution of the network state, which is defined by multiple concurrent
factors such as topology, traffic flows and available services.

The literature in the domain of routing is very extensive. Routing re-
search has fully accompanied the evolution of networking to constantly adapt
the routing protocols to the different novel communication technologies and
to the changes in user demand. In this chapter we review routing proto-
cols and algorithms which have been specifically designed taking inspiration
from, and reverse engineering the characteristics of, processes observed in in-
sect societies. This class of routing protocols is indeed relatively large. The
first notable examples date back to the beginning of the second half of the
1990s [27, 113, 123, 151], and a number of further implementations rapidly
followed the first ones and gained the attention of the scientific community.
In this chapter we will limit the discussion to the most popular and effective
instances of this specific class of routing protocols.

The fact that insect societies have, and, more in general, nature has, served
as a major source of inspiration for the design of novel routing algorithms
can be understood by noticing that these biological systems are character-
ized by the presence of a set of distributed, autonomous, minimalist units
that through local interactions self-organize to produce system-level behaviors
which show life long adaptivity to changes and perturbations in the external
environment. Moreover, these systems are usually resilient to minor internal
failures and losses of units, and scale quite well by virtue of their modular
and fully distributed design. All these characteristics, both in terms of system
organization and resulting properties, meet most of the necessary and desired
properties of routing protocols for next-generation networks. This fact makes
it potentially very attractive to look at insect societies to draw inspiration
for the design of novel routing protocols featuring autonomy, distributedness,
adaptivity, robustness, and scalability. These are desirable properties not only
in the domain of network routing but also in a number of other domains.
As a matter of fact, in the last 20 years, collective behaviors of insect soci-
eties related to operations such as foraging, labor division, nest building and
maintenance and cemetery formation have provided the impetus for a growing
body of scientific work, mostly in the fields of telecommunications, distributed
systems, operations research, and robotics (e.g., see [7, 24, 43, 46, 48] for ref-
erences and overviews). Behaviors observed in colonies of ants and of termites
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have fueled the large majority of this work. More recently, also bee colonies
are attracting a growing interest. In the following we review network routing
algorithms inspired by these three classes of social insects. The vast majority
of the reviewed algorithms are derived from ant colonies, and in particular,
from their ability to discover and follow shortest paths between their nest and
sources of food [59].

All the algorithms that we will discuss later in the chapter are character-
ized by the fact of their being composed of a potentially very large number
of autonomous and fully distributed controllers, and of having been designed
according to a bottom-up approach relying on basic self-organizing abilities
of the system. These characteristics, together with the biological inspiration
from behaviors of insect societies, are the very fingerprints of the swarm intel-
ligence (SI) paradigm [7]. These peculiar design guidelines contrast with those
of the more common top-down approach followed for the design of the major-
ity of “classical” routing protocols. In typical top-down design a centralized
algorithm with well-known properties is implemented in a distributed system.
Clearly, this requires us to modify the original algorithm to cope with the
intrinsic limitations of a distributed architecture in terms of full state observ-
ability and delays in the propagation of the information. The main effect of
these modifications consists in the fact that several properties of the original
algorithm do not hold anymore if the network dynamics is non-stationary,
which is the most common case. Still, it is relatively easy to assert some gen-
eral formal properties of the system. On the other hand, with the bottom-up
approach, the design starts with the definition of the behavior and interac-
tion modalities of the individual node with the perspective of obtaining the
desired global behavior as the result of the joint actions of all nodes inter-
acting with one another and with the environment at the local level. It is in
general “easier” to follow a bottom-up approach, and the resulting algorithm
is usually more flexible, scalable, and capable of adapting to a variety of dif-
ferent situations. This is precisely the case for the SI algorithms that we will
review. The negative aspect of this way of proceeding is that it is usually
hard to state the formal properties and the expected behavior of the system.
One of the objectives of this chapter consists in showing the common traits
and properties of SI routing algorithms derived from insect societies, compar-
ing them to the characteristics and properties of established state-of-the-art
routing algorithms not based on SI, and evaluating the relative merits.

For space reasons and without loss of generality, we will restrict the classes
of networks that we will consider. More specifically, we will focus the discussion
on routing algorithms for non-optical connectionless and connection-oriented
wired networks offering best-effort and/or guaranteed quality services, and for
wireless mobile ad hoc networks (MANETs) [106]. These are wide and general
classes of networks that include a large number of network instances of both
practical and theoretical interest. Concerning SI-based routing algorithms for
other important classes of networks the interested reader can consult for in-
stance [58, 91] for the case of optical networks, [119] for the case of satellite
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networks, and [15, 88, 97, 108, 109] for the case of sensor networks. In [145]
the interested reader can find a general overview of nature-inspired routing
algorithms, while in [2], a more general discussion on the design of algorithms
for modern telecommunication networks using design patterns derived from
the observation of biological systems can be found.

1.1 Organization of the Chapter

The remaining content of the chapter is organized for considering separately
the ant- and the bee-colony-inspired frameworks and their applications to
each one of the considered classes of telecommunication networks. For each
algorithm we will point out the general design characteristics and performance.

• Section 2 briefly introduces network routing, and discusses the general
characteristics of routing and the associated challenges for each one of the
considered network classes.

• Section 3 provides a comprehensive set of classification features that we
will use to characterize routing protocols and to which we will refer to
throughout the chapter to highlight the main differences among the dif-
ferent protocols and, more specifically, between the SI protocols reviewed
here and the more standard, established ones which are widely deployed
in real-world networks.

• Section 4 and its two subsections describe respectively the ant and bee
colony behaviors that have fueled the design of so many network routing
algorithms. In particular, Subsect. 4.1 introduces the Ant Colony Opti-
mization (ACO) metaheuristic, which is based on the reverse-engineering
of the ant colony shortest-path behavior, and which has provided the main
practical guidelines for the design of the ant-colony-inspired algorithms.

• Section 5 and all its subsections are devoted to the discussion of routing
protocols derived from ACO. First, the general principles behind ACO and
ACO for routing are discussed in Subsect. 5.1. In Subsects 5.2 and 5.3, we
describe in some detail AntNet and ABC, which are the main reference
algorithms that have guided the design of most of the other algorithms.
In Subsects. 5.4 to 5.7 we discuss the characteristics of a number of ACO
routing algorithms. The algorithms are grouped per network type and are
considered in chronological order.

• Section 6 and its two subsections are devoted to the discussion of routing
protocols derived from bee colonies. In practice, we discuss in some detail
two main implementations, BeeHive for wired connectionless networks and
BeeAdHoc for MANETs.

• Section 7 summarizes the presented results and draws some general con-
clusions about the efficacy and the future perspectives of the SI approach
to the design of novel routing protocols for next-generation networks.
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2 Generalities and Challenges of Network Routing

The behavior of the network routing protocol drives network dynamics and
critically affects performance. In fact, it implements the strategies used by
network nodes to determine and use paths to forward data or information
from sources to destinations. Generally speaking, the routing protocol defines
what information is going to be used to make routing decisions, how this
information is communicated among the nodes, and how it is encoded in
the node’s routing table, which is the local database of routing information.
A routing table maintains the necessary information to define for each end
node of interest and for each locally available output interface the quality
and cost associated with the selection of the interface as the next hop to
forward data toward the end node. The routing algorithm, being part of the
protocol, makes use of this information to actually select the paths and forward
data along them. The challenges faced by a routing protocol and the measure
of its efficacy depend on the characteristics of the network at hand. In the
following we briefly review these aspects for the considered network types. The
interested reader can find more accurate discussions in networking textbooks.

Transmission Mode: Connection-Oriented vs. Connectionless

One basic distinction among network types is based on the adopted point-
to-point switching technique. The two main classes of networks can be sin-
gled out: circuit-switched and store-and-forward. In circuit-switched networks,
prior to start sending end-to-end data, it is necessary to seek out and establish
a physical dedicated path between the two end points. No buffers for data are
needed. Once the connection is set up, the only delay is propagation time.
A telephone network is a typical example of a circuit-switched network. In
store-and-forward networks, an intermediate node along the path stores each
incoming block of data, inspect it for errors, and retransmits it along the path
to the destination. Message, packet, and cell switching refer respectively to
the cases of a store-and-forward network in which the transferred block is a
complete message, a variable-length block of data with a size upper bound,
or a small, fixed-size block of data. The switching method most widely used
in networks, such as the Internet, is the packet-switching one. It can support
different transmission modes. The connection-oriented mode shares the same
principles as the circuit-switching technique. Prior to packet sending, a path
connection (virtual circuit) must be established between the two endpoints.
The virtual circuit can be a dedicated physical connection or a logical one,
shared among different data sessions. The task of the routing system is to find
and use full end-to-end paths. Typical measures of performance in this case
are the session acceptance ratio, the delivered throughput, and statistics of the
packet latencies such as the average end-to-end delay. The latter two perfor-
mance metrics are reference metrics for almost any type of network, since they
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summarize two basic aspects related to the quantity and the quality of the ser-
vice a network can deliver. In connectionless (datagram) networks, a packet
is injected into the network without requiring establishing any connection,
physical or virtual, and without any guarantee that the packet will be deliv-
ered at the destination. Each relay node deals with the packet independently
of the other nodes and makes use of packet header information to decide how
to route the packet. In this case, routing tables and data forwarding across
the nodes should be consistent to let the packet traveling over existing and
loop-less routes

Delivered Service: Best-Effort vs. Guaranteed-Quality

One major distinction can be made between networks offering best-effort ser-
vices and those offering quality of service (QoS). In best-effort networks the
user applications are served with no guarantees on the quality of the delivered
service. On the other hand, in QoS networks the user can specify constraints
on the quality of the obtained service (e.g., in terms of end-to-end delay, de-
lay jitter, bandwidth, etc.) and the network is expected to either meet these
requirements or reject the application. In QoS networks the general challenge
of routing consists in the ability to rapidly and robustly identify one or more
paths that meet the QoS requirements of current traffic sessions while pro-
viding at the same time an efficient utilization of the network resources in
order to be ready to satisfy the QoS requests of future sessions. There are
several network models that can allow provisioning of QoS. The most popu-
lar ones are: IntServ, DiffServ, and Multi Protocol Label Switching (MPLS)
(e.g., see [139]). In IntServ the network must find and reserve resources for
each single QoS flow. DiffServ is based on the organization of data traffic into
multiple classes, with each class associated with different QoS requirements.
Each packet is placed into a specific class and each router is configured to
take different routing and scheduling actions depending on the class of the
data packet. MPLS is a data-carrying mechanism which emulates some basic
properties of a circuit-switched network over a packet-switched network. Once
an end-to-end path has been found, it is uniquely identified at the nodes by
means of labels and can be then efficiently used to forward data flows.

Topology and Connectivity: Wired vs. Wireless Mobile Ad Hoc
Networks

In wired networks hosts and routers are connected through one-to-one cables
creating a fixed network topology which undergoes only low-rate modifications
due to addition or removal of resources and to temporary failures. Point-to-
point communication links are usually reliable and have large bandwidth.
Terminals are equipped with good computational resources and are not con-
cerned with power supply issues. The challenges for a routing protocol are the



Routing Protocols Inspired by Insect Societies 107

changing traffic patterns, the heavy loads, the small topological modifications,
and the usually large number of nodes which scale up over time.

Wireless networks with mobile users present radically different character-
istics and challenges. In this chapter we are interested in one specific class
of wireless mobile networks, the mobile ad hoc networks (MANETs) [106],
which during the past few years have become a very active area of research
due to their unique characteristics. In a MANET all nodes are mobile and
can enter and leave the network at any time. They communicate with each
other via medium-range wireless connections that can constantly be estab-
lished and broken because of mobility. There is no ground infrastructure to
rely on. All nodes are peers and can serve as routers to each other. Data
packets are forwarded from node to node in a multi-hop fashion. The wireless
channel is shared among the peer nodes and the access must be arbitrated
according to some distributed Medium Access Control (MAC) protocol, which
results in a rather low and irregular amount of effective available bandwidth.
Terminals have usually less computational power than in the wired case and
are powered by on-board batteries with limited lifetime. All these aspects,
such as mobility, shared channel, low bandwidth, short battery lifetime, and
distributed multi-hop forwarding, impose severe challenges and restrictions
to the routing protocol. A good protocol is one that can effectively adapt to
dramatic topological changes, needs relatively low control overhead, provides
high throughput and low packet delays, and saves as much as possible of bat-
tery power to let the users and their mobile devices participate as long as
possible in the network activities. It is clearly very hard to meet in a satis-
factory way all these conflicting objectives; therefore, a rather large number
of different routing algorithms have rapidly appeared in the literature (e.g.,
see [11, 106, 122]). A common feature of MANET routing algorithms is that
they are all adaptive.

State-of-the-Art Routing Algorithms

Long-standing research on network routing has resulted in a rather large num-
ber of routing protocols and algorithms showing different characteristics ac-
cording to the different types of networks and offered services they are meant
for. Clearly, it is not possible to properly account for this large literature here.
In this paragraph we limit ourselves to a brief discussion of a small number
of state-of-the-art algorithms that are often mentioned to assess the relative
performance of the reviewed swarm intelligence algorithms.

OSPF [87] and RIP [79] are among the most popular protocols for routing
within Autonomous Systems (interior protocols) in use in the wired Inter-
net, while BGP [158] is widely used to communicate among Autonomous
Systems. OSPF belongs to the category of link-state algorithms. In these al-
gorithms, each node periodically floods a comprehensive state description of
all its communication links. This description is used at each receiving node
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to incrementally construct and update a complete weighted graph of the net-
work. OSPF makes use of Dijkstra’s shortest-path algorithm to calculate the
routes based on this graph representation. While OSPF is mainly topology-
adaptive, an earlier version of it, Shortest Path First (SPF) [73], was both
topology- and traffic-adaptive. QOSPF [159] is an extension of OSPF to deal
with QoS requests in conjunction with a resource reservation protocol such as
RSVP [157]. In QOSPF, flooded link-state messages report on QoS informa-
tion and resources used by active flows.

RIP and BGP are instances of distance-vector protocols. In this case, each
node only knows the set of network destinations and maintains in the routing
table the vector of the best distances (e.g., number of hops) to reach each
destination. These distances are periodically sent to all the neighbors and are
calculated incrementally from hop to hop using algorithms derived from the
well-known Distributed Bellman-Ford algorithm [6], which is in turn based
on dynamic programming [5]. In practice, when node i receives from its neigh-
bor j a message saying that j’s shortest distance estimate to destination d is n
hops, i can safely set its best distance to d as n+1 hops if its current shortest
distance estimate was m > n+1. This way of constructing distance estimates
is prone to what is termed “counting to infinity”: a very slow convergence
to the right distance vectors after a destination becomes unreachable, with
the concrete risk of loops and dangling routes. A notable recent distance-
vector implementation which deals effectively with these problems and has
also interesting additional properties is the Multi-path Distance-Vector
Algorithm (MDVA) [138]. The algorithm is loop-free under stationary condi-
tions and makes also use of multiple paths.

The Bellman-Ford’s way of constructing estimates building on others’ es-
timates is also termed bootstrapping and is widely used in the domain of
model-based reinforcement learning [125]. More precisely, the notions of boot-
strapping and reinforcement learning have guided the design of Q-routing [9]
and of the derived PQ-routing [19], which are among the most notable con-
tributions of artificial intelligence research to the domain of network routing.

Concerning MANETs, the reference algorithms are: Ad hoc On-demand
Distance Vector routing (AODV) [99], Optimized Link State Routing
(OLSR) [21], and Dynamic Source Routing (DSR) [69]. AODV is a reactive
distance-vector algorithm, that is, routing information is only collected when
necessary to route an active traffic session. OLSR is a proactive link-state al-
gorithm directly derived from OSPF and adapted to deal with the dynamic
aspects of MANETs. DSR is a reactive source-routing algorithm, that is, the
header of each data packet carries the complete route to the destination in
the form of ordered next hop nodes.



Routing Protocols Inspired by Insect Societies 109

3 Classification Features of Network Routing Protocols

In principle, many different taxonomies can be adopted to effectively classify
routing protocols (e.g., [53]). In the following, we identify a specific set of
classification features which will serve to capture the distinctive character-
istics of each considered SI algorithm and, at the same time, to point out
the general differences existing between these algorithms and more standard,
non-nature-inspired, protocols. The classification features we propose here are
partly based on those considered by CISCO [20]:

Static vs. Dynamic. Static routing protocols are based on the use of routing
tables which are defined offline by network administrators based on some
prior knowledge of the network. Dynamic protocols update routing tables
and routing decisions online to reflect changes in the network state. Most
of the protocols currently in use on the Internet, such as the mentioned
OSPF and RIP, mainly deal with topological changes deriving from run-
time failures and/or addition or removal of network resources, and do not
explicitly take into account varying traffic patterns. On the other hand,
most of the SI algorithms are explicitly designed to be adaptive to both
topological and traffic variations.

Single-Path vs. Alternate- and Multi-path. Single-path algorithms for rout-
ing make use of a single path at a time to forward traffic between two
end-points. The path is determined to be the best one available accord-
ing to the considered performance metrics. Alternate-path algorithms still
make use of a single path but calculate and maintain also a backup path
to be readily used in case of any problems or unavailability of the main
reference path. Finally, multi-path algorithms discover, maintain, and use
multiple paths to forward flows between the same source-destination pair.
This allows it to multiplex the traffic, usually resulting in better failure
resilience, utilization of network resources, and higher throughput with
respect to the other two mentioned strategies.

Flat vs. Hierarchical Organization. Flat routing protocols consider all nodes
in the (sub)network as peers and maintain an entry in the routing table
for each of them. This allows peers to discover best individual routes at
the cost of transmitting a relatively large amount of control packets and
maintaining large routing tables. Routing algorithms based on hierarchi-
cal organization form logical groups of routers and organize them into
areas, domains, and autonomous systems. This popular way of organizing
the network requires two types of routers, interior routers, which route
traffic within a domain, and exterior routers, which route traffic between
domains. A hierarchical organization requires significantly smaller routing
tables than a flat organization, requiring, in turn, smaller memory storage
and less use of bandwidth to maintain routes.

Host vs. Router Intelligent. In host-intelligent protocols a host determines
the entire route to a destination and appends it to each packet header.
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This way of proceeding is also known as source routing. The other routers
in the system simply forward packets to the next hop specified in the
header and in principle do not need to maintain up-to-date routing in-
formation for destinations not addressed by local sessions. On the other
hand, in next hop routing protocols routing decisions are taken by the sin-
gle routers (“router-intelligent”) that discover, maintain, and use paths
on a per packet or flow basis.

Global vs. Local Representation. In routing protocols using a global represen-
tation, each node maintains a complete topological database of the net-
work with the aim of constructing a network graph and applying (short-
est) path finding algorithms to it. The popular class of link-state protocols
exploits this strategy. On the other hand, protocols relying on local rep-
resentations define the local routing policy on the sole basis of the local
traffic and topology models. Distance-vector protocols make use of local
representations. Link-state algorithms converge quicker, scale better, but
require more CPU power and memory than distance-vector algorithms.
Therefore, they are more expensive to implement and support. SI proto-
cols, which tend to simplicity, are usually based on local representations.

Deterministic vs. Probabilistic Decisions. Deterministic algorithms use a de-
terministic selection rule applied to the information contained in the rout-
ing table to decide next hops. Usually this results always in the greedy se-
lection of the best routing alternative. In contrast, probabilistic algorithms
make use of a probabilistic selection rule. On the one hand this might
result in locally sub-optimal choices; on the other hand, when multiple
equivalent or comparable choices are available, the adoption of probabilis-
tic routing selection will spread traffic across different concurrent paths
implementing de facto a multi-path scheme and favoring load balancing.
Clearly, a probabilistic scheme requires more computational and memory
resources than a deterministic scheme to process each single packet and
maintain all the necessary routing information [130]. A probabilistic de-
cision scheme can be used also to forward control packets, not only data
packets. In these cases, the probabilistic scheme can be exploited to pro-
vide a certain level of randomness in the way paths are discovered and
set up. This is supposed to add robustness and flexibility to the routing
system to better cope with the intrinsic network variability. As will be
shown later, probabilistic schemes for both data and control packets are
widely adopted in SI algorithms.

Constructive vs. Destructive Routing Table Making. Constructive protocols
start with an empty set of routes and incrementally add routes till the
final routing tables are constructed. In contrast, destructive algorithms
begin by assuming that all possible paths in the network are valid. That
is, they assume that the network is a fully connected graph. Starting
from this initial assumption, destructive algorithms incrementally gather
information to cut paths that do not actually exist in the physical net-
work [133]. Protocols based on strong exploratory or random strategies



Routing Protocols Inspired by Insect Societies 111

are usually destructive, as is the case for many SI protocols for wired net-
works. On the other hand, when the network topology is highly dynamic,
for example, routes constantly appear and disappear as in the case of
MANETs, the usual approach is the constructive one.

Proactive vs. Reactive Behavior. Reactive protocols gather routing informa-
tion only in response to an event, usually one which triggers the need for
new routes, such as the start of a data session toward a new destination
or the failure of an existing route in use. In proactive protocols, routing
information is constantly gathered, so that it is readily available when is
needed. In the literature, proactive behavior is often associated with the
fact that the protocol proactively defines and maintains routes toward all
the possible destinations in the network. Hybrid protocols result from any
combination of reactive and proactive behaviors. Usually all the protocols
for wired networks offering best-effort services are proactive. QoS proto-
cols are hybrid, with the reactive component addressing the QoS requests
and the proactive component serving for both the QoS and the best-effort
routes. Protocols for MANETs are rather uniformly distributed among
the three different types of behaviors.
Proactive gathering of routing information can in principle permit us to
build sound statistical estimates of relevant aspects of the network dynam-
ics that can be used in turn to learn and adapt the local routing policies
with continuity. On the other hand, it is usually unfeasible to build sound
statistical estimates when using a purely reactive strategy since there is
no continuity of information gathering. Clearly, an adaptive learning ap-
proach will only be effective if the network dynamics show exploitable
correlations over time at either the local or the global level, and do not
hectically change with a high frequency.

Formal Guarantees vs. Emergent Behavior. Some algorithms come with for-
mal guarantees concerning specific aspects of their behavior and perfor-
mance. Properties that are particularly useful to be assessed regard: failure
resiliency, establishment of loop-less routes, and convergence to an opti-
mal route assignment. Fully deterministic algorithms designed according
to top-down approaches have higher chances to enjoy verifiable properties
than algorithms designed following a bottom-up approach and that make
use of random components, which is often the case for SI algorithms. For
this special class of algorithms, the resulting network behavior can be
effectively categorized as “emergent”, since it is usually hard to provide
a precise formal description of the expected network response and per-
formance. On the other hand, also in the case of top-down design, the
above-mentioned properties can be usually asserted in special cases and
only when steady stationary conditions are assumed, which is more the
exception, rather than the rule, for network behavior.
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4 From Insect Societies to Network Routing Protocols

Two specific classes of insect societies have inspired a relatively large volume
of work in the specific domain of network routing: ant and bee colonies. More
specifically, the ability of ant colonies to discover shortest paths between their
nest and sources of food using a pheromone laying-following mechanism [59]
has been reverse-engineered and put to work in the general optimization
framework of the Ant Colony Optimization (ACO) metaheuristic [44, 45, 48];
see also Chap. 2 of this book. To date, ACO is a state-of-the-art metaheuristic
for many problems in the domains of combinatorial optimization and network
routing. More recently, the communication and recruitment strategies adopted
for effective foraging within a beehive have inspired the development of some
novel algorithms for routing problems.

In the following two subsections we discuss separately the general princi-
ples behind the ant- and bee-inspired approaches to network routing.

4.1 Shortest-Path Behavior in Ant Colonies and the Ant Colony
Optimization Metaheuristic

It has been observed that foraging ants in a colony can converge on mov-
ing over the shortest among different paths connecting their nest to a food
source [45, 59]. The main catalyst of this colony-level shortest-path behav-
ior is a volatile chemical substance called pheromone. While moving, ants
lay pheromone on the ground and, at each step, they preferentially decide,
with a random component, to locally move toward the adjacent areas marked
by higher pheromone intensity. Shorter paths between the nest and the food
source can be completed quicker and more frequently by the ants moving
back and forth, and will therefore be marked with higher pheromone inten-
sity. These paths will then attract over time more and more foraging ants,
which will in turn increase the pheromone level of these paths, until there is
convergence of the majority of the ants onto the shortest path(s).

The local intensity of the pheromone field encodes a spatially distributed
measure of goodness locally associated with each moving decision. It is the
result of the repeated and concurrent path sampling experiences of the ants.
In other words, it is the result of a collective reinforcement learning pro-
cess [24, 125] happening at the colony level. This form of distributed learning
and control based on indirect communication among agents (the ants) which
locally modify the environment and react to these modifications leading to
a phase of global coordination of the agent actions is called stigmergy [129].
In nature, ant colonies, as well as other social insects, make use of a variety
of different pheromone signals for stigmergic communications. The different
pheromones are secreted by different glands, and differ both in their chemical
composition and their volatility. Recent studies have shown that this complex
indirect signaling system based on multiple pheromones is efficiently exploited
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to react and coordinate in different ways to different stimuli in the environ-
ment [68]. For instance, the presence of a predator fuels the release of a danger
type of pheromone, while the discovery of a prey to be carried into the nest
stimulates the generation of an intense but short-lived type of pheromone
which is different from the long-lived pheromone laid for the exploitation of
an abundant source of food. Pheromones can be not only attractive, as the
ones described so far, but also repulsive. For instance, a branching leading
to a bad route can be marked with repulsive pheromone to avoid its future
selection.

Stigmergic coordination is one of the keys to obtaining self-organized be-
haviors not only in ant colonies but more generally across social systems.
When stigmergy is at work, a system’s protocols (interfaces) play a prominent
role compared to modules (agents) [22], which can be kept relatively simple. A
good stigmergic model supplies robustness, scalability, and evolvability, and
allows to fully exploit the potentialities of the modules and of modularity.
Stigmergic systems are paradigmatic examples of the swarm intelligence ap-
proach.

The ability of ant colonies to “solve” distributed shortest-path problems
using a number of minimalist agents and pheromone-mediated stigmergic com-
munications has been exploited in the framework of the ACO metaheuristic,
in which all the mechanisms at work in the ant colony shortest-path behavior
have been reverse-engineered to define a nature-inspired metaheuristic for the
(distributed) solution of generalized shortest-path problems in graph structures
(notice that almost any network and combinatorial optimization problem can
be formulated in terms of finding shortest paths in a graph [24]). The ACO
metaheuristic features are repeated path construction by a distributed system
of lightweight agents called ants, the use of a stochastic decision policy to in-
crementally construct each path by an ant that moves step-by-step from one
node of the graph to an adjacent one, stigmergic communications among the
ants through node-local stigmergic variables called pheromone variables, and
collective stigmergic learning of the pheromone variables, which represent the
parameters of the decision policy, that is, which encode the expected quality of
each decision about the next node to include in the path under construction.

The application of the ACO metaheuristic to network routing is quite
straightforward. This results both from the intrinsic distributed architecture
of the metaheuristic and from the fact that the problem of defining optimized
routing paths in a network environment can be configured as a particular
instance of a shortest-path problem, with the weights of the edges being dy-
namic values depending on bandwidth, propagation delay, and input traffic
(whose characteristics are usually unknown with precision in advance).

4.2 Useful Ideas from Honey Bee Colonies

More recently than ant colonies, honey bee colonies have attracted a strong in-
terest as a potential source of inspiration for the design of optimization strate-
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gies for dynamic, time-varying, and multi-objective problems. Bee colonies
show structural characteristics similar to those of ant colonies, such as the
presence of a population of minimalist social individuals, and must face anal-
ogous problems such as distributed foraging and nest building and mainte-
nance. Bees utilize a sophisticated communication protocol that enables them
to communicate directly through bee-to-bee signals and, when required, simi-
larly to ants, to use stigmergic feedback cues for bee-to-group or group-to-bee
communication. In these two classes of insects, communication and coopera-
tion are realized by radically different modalities due to the different nature
of these insects (ants walk, while bees mainly fly). In particular, while in the
case of ants communication is achieved via a pheromone trail that is laid on
the ground while walking, in the case of bees it is a form of visual communi-
cation that plays an equivalent role. In the following we briefly point out and
discuss the main mechanisms at work in a bee colony which have found their
application in the design of routing algorithms.

Adaptive and Age-Related Division of Labor

A honey bee colony consists of morphologically uniform individuals with dif-
ferent temporary specializations [114]. The benefit of the organization is an
increased flexibility to adapt to the changing environments. For instance, a
nectar forager can become a water forager if the colony is running out on its
water supplies. More specifically, in honey bees division of labor is mainly
related to age: workers of different ages specialize in different tasks (this
phenomenon is called age polyethism or behavioral development). Workers
typically perform brood rearing for the first week, engage in other hive main-
tenance duties (wax secretion, guarding, undertaking, nectar processing) when
they are ”middle-aged” (two to three weeks old), and switch to foraging and
colony defense when they are about three weeks old. These phases can be
adaptively modified in response to the alteration of colony conditions.

Communication Inside the Colony and Worker Recruitment

As in the ant case, in a bee colony foraging is a critical aspect for the survival of
the colony and is executed in a fully distributed and competing way. Foraging
bees constantly leave the hive searching for new sources of nutrients, bring
the nutrients back to the hive, and try to recruit other bees to exploit the
food site found by competing with each other during the recruitment process.
Foragers announce a food source of interest to their fellow foragers by doing
a dance on the dance floor inside the hive [136, 137]. This dance is termed
waggle dance. It is a particular figure-eight dance that encodes the direction of
the food source in the angle from the sun, and the distance in the duration of
each waggle run [114]. If the distance is very short the waggle dance resembles
a round dance. Foragers respond to the waggle dance with a strong preference
for choosing nearer food sites over distant ones in order to increase the net
energetic efficiency of the colony. The waggle dance is a direct form of agent-
to-agent communication.
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Nectar foragers, upon return to the hive, sometimes also perform across
the hive a quite strange dance termed tremble dance. The tremble dance means
that the forager found a rich food source but upon return to the hive, after
a certain threshold time, could not find a food storer bee to give her nectar.
This suggests that the message of the tremble dance is to stimulate the bees
inside the hive to increase and/or to switch to nectar-processing activities, and
to inhibit the outside foragers from recruiting additional bees. Basically the
tremble dance is intended to activate behaviors that keep a colony’s nectar-
processing rate matched with its nectar intake rate.

Stochastic Selection of Food Sites

The unemployed foragers refrain from extensively surveying the dance floor
to identify the best food site. On the contrary, they observe maximally two
or three dances on the dance floor and then decide to follow the indications
of one of them according to a stochastic rule. As a result, a colony distributes
its foraging force on multiple food sites such that when one rich food site has
been almost fully exploited the colony is already exploiting other sites [114]. In
this way an effective balancing between exploitation and exploration is auto-
matically obtained. Sumpter [124] has developed a formal agent-based model
using process algebra for the foraging behavior of honey bee colonies which
provides some useful insights into the colony-level strategy for the distribution
of the exploitation activities.

5 Routing Protocols Based on Ant Colony Optimization

5.1 General Structure and Properties of ACO Routing Protocols

The main characteristic of an ACO routing algorithm [24, 38] consists in
the continual acquisition of routing information through path sampling and
discovery using small control packets, the ants. The aim is to adaptively learn
statistical estimates of the quality (e.g., expected end-to-end delay) of each
local routing choice. The ants are generated concurrently and independently
by the nodes, with the task to try out a path to an assigned destination.
An ant going from source s to destination d collects information about the
quality of the path, and, either on the way to d or while retracing its way
back from d to s, it uses this information to update the routing tables at
intermediate nodes, reinforcing the good paths. In other words, the repeated
path sampling and consequent reinforcement of good routing decisions is a
form of distributed reinforcement learning based on stigmergy (e.g., see [100,
24]). The routing table at node i is derived from the so-called pheromone table
T i, which contains for each destination d of interest a vector τ̄d of real-valued
entries τnd, one for each node n in the reachable neighbor of i, indicated
hereafter with N i. These entries, which are the pheromone variables, are a
local measure of the goodness of going over the neighbor n on the way to d.
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They are continually updated according to the quality of the paths sampled
by the ants. The repeated work of the ants results in the availability, at each
node, of a bundle of paths, each with an estimated measure of quality based on
pheromone. The information from the pheromone tables is usually combined
with additional heuristic information η not depending on or derived from the
sampling activities of the ants, to obtain the selection probabilities p which are
used by the ants to find their way to the assigned destination d: at each node i
they stochastically choose a next hop n ∈ N i giving higher preference to those
next hops associated with higher pnd values, which are calculated as some
function f of both pheromone and heuristic values, pnd = f(τnd, ηnd). The
heuristic values have the same structure as the pheromone values and associate
with each pair (next hop, destination) a heuristic measure of goodness. For
instance, the number of packets waiting on the queue for link i → n can be
used as a local measure of the goodness of using that link. However, not all the
implementations make use of a heuristic correction to the pheromone values
to derive the selection probability values.

In the case of connectionless networks, packets are usually routed more or
less in the same way as the ants: packets are routed stochastically, choosing
with a higher probability those links associated with higher pheromone and
ant-routing values. This way data for a same destination are adaptively spread
over multiple paths (but with a preference for the best paths), resulting in load
balancing. In the case of connection-oriented networks, spreading can be done
at the level of virtual or physical circuits. For both data packets and circuits,
mechanisms are usually adopted to avoid low-quality paths, while ants are
more explorative, so that also less good paths are occasionally sampled and
maintained as backup paths for failures or sudden congestion. In this way path
exploration is kept separate from the use of paths by data. If enough ants
are sent to the different destinations, nodes can keep up-to-date information
about the best paths, and automatically adapt their data load spreading.

Referring to the classification features of Sect. 3, ACO implementations
for routing usually show the following characteristics: (i) they are all adap-
tive, with a special focus on traffic patterns, (ii) they usually provide and use
multiple paths, (iii) they are mostly based on a flat organization, (iv) router-
intelligent schemes are the most adopted ones, (v) global representations are
barely used since the approach in a sense emphasizes simplicity and locality,
(vi) probabilistic exploratory decisions are an integral part of all the imple-
mentations, (vii) they adopt either a constructive or a destructive approach
depending on the network type, (viii) the majority of the implementations
follow either a proactive or a hybrid scheme, and make use of some form
of incremental learning to continuously adapt over time the routing tables
to network changes, (ix) usually these algorithms come with no or little for-
mal guarantees apart from some guarantees of probabilistic convergence to
the optimal policy under stationary network conditions, and the probabilistic
guarantee that a packet following a loop will be routed out of the loop in a
short time.
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The first ACO routing algorithms were developed at the beginning of the
second half of the 1990s and were designed for wired networks: AntNet [29]
for connectionless IP data networks and ABC [113] for circuit-switched tele-
phone networks. A number of other ACO implementations for different routing
problems have been developed since then. The majority of these subsequent
implementations have based their design on the general features and architec-
ture of either AntNet or ABC. Therefore, in the following we give a special
attention to these two algorithms that can be considered as the main refer-
ence templates for ACO routing implementations and can help us understand
the common architecture and characteristics of most of the other implemen-
tations.

In [24, 37, 38] Di Caro et al., starting from the observation of the existence
of a core set of features common to most of the ACO-derived algorithms for
routing, defined the Ant Colony Routing (ACR) framework. ACR includes
basic ACO concepts but at the same time extends them with notions from
the domains of reinforcement learning [125], multi-agent systems, and auto-
nomic networking [72], and specializes them for the specific class of network
routing problems. The ACR framework is intended to provide the basic guide-
lines for the design of novel adaptive protocols for routing in modern dynamic
networks. Because of lack of space, we are not going to discuss here the ACR
framework. However, it is worth pointing out that ACR explicates the two
main mechanisms for monitoring and learning which are at the core of most
of the routing algorithms derived from ACO: node-local monitoring of traffic
dynamics for inductive learning of congestion and routing information, and
non-local sampling and probing of full paths by using ant agents that im-
plements a combination of active learning and Monte Carlo learning [125]
strategies. The use of these techniques is in some sense not new to the field of
networking. The use of inductive learning traces back to the work on learning
automata of Narendra et al. [90, 92], while active probing has been widely
used to estimate characteristics of network paths (e.g., [67]). However, the
way their are combined, implemented, and used in ACO routing, and, more
generally, in ACR, is innovative and highly effective.

The interested reader can find additional definitions, discussions, and anal-
ysis concerning the application of ACO to routing in [24, 29, 37, 38, 121].

5.2 AntNet: The Main Reference Algorithm for Connectionless
Networks

AntNet (1997) [24, 25, 28, 29, 30] was proposed by Di Caro and Dorigo for
dynamic best-effort routing in wired IP networks such as the Internet. The
algorithm is explicitly designed to provide traffic-adaptive routing. Topological
changes are not explicitly considered, so that route breaks due to link failures
are only dealt with implicitly by reacting to the increase of the number of data
packets waiting in the queue of the broken link. A flat network organization
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with router-intelligent hosts is assumed. Informally, the behavior of AntNet
can be summarized as follows.

At the beginning of the operations routing tables are initialized with uni-
form equal values for all the neighbors, basically adopting a destructive ap-
proach. They are then adapted over time as a result of the ant-based activities.
At regular fixed intervals and concurrently with data traffic, ant agents are
proactively and independently launched from each network node s toward des-
tination nodes d which are chosen by following a random proportional selection
that favors the locally most requested destinations, or by implementing with a
very small probability a random uniform selection. These ants are called for-
ward ants. A forward ant is a sort of random experiment aimed at exploring
the network searching for a minimum delay path connecting an ant’s source
and destination nodes, and gathering at the nodes information about the end-
to-end delay for the followed path. Ants, once generated, act as autonomous
agents. They communicate in an indirect, stigmergic way, through the infor-
mation they locally read from and write to the nodes in three data structures:
the pheromone table T , the parametric statistical model M, and the data
routing table R, that together define the routing information database locally
available to issue routing decisions (see also Fig. 1).

The pheromone table is a stochastic matrix which is used by the ants as
a routing table. Each pheromone estimate τnd ∈ T i, n ∈ N i, is the result of
the continual path sampling and learning activities of the ants, and is related
to the inverse of the estimate of the expected minimum time to reach d. τ ’s
values for the same destination d are normalized to 1 (

∑
n∈N i τnd = 1). This

allows to treat the pheromone values as probabilities and better evaluate the
relative goodness of each neighbor. Mi is a parametric statistical model for
the traffic and delay situation on the paths to the different destinations. Mi

is a vector of N triples (μd, σ
2
d,Wd), with N being the number of destinations.

μd is the sample exponential mean of the ants’ traveling time to reach d, σ2
d

is its variance, and Wd is the best end-to-end time observed during the last
window of w ant samples. Finally, the data routing table Ri is the stochastic
matrix used for routing data packets. It is derived from the pheromone table
by an exponentiation and renormalization process that assigns to the best
routes much higher selection probabilities than in the case of the pheromone
table. This is because the ants are supposed to explore, while the data packets
are supposed to exploit at best the paths found by the ants.

Forward ants simulate data packets. They move hop-by-hop toward their
destination making use of the same priority queues used by data packets,
experiencing in this way the same delays. During its journey to d, a forward
ant stores in its memory the traveling time ti→j between each hop i → j
and the identifiers of the visited nodes along the followed path Ps→d. At each
intermediate node i, a stochastic decision policy πε(T i,Li,P) is applied to
select the next node n ∈ N i to move to, where N i is the set of neighbors of i.

The selection probability pnd assigned to each neighbor n ∈ N i is a mea-
sure of the goodness, relative to all the other j ∈ N i, j �= i, of using the
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neighbor as next hop for final destination d. p values are calculated consider-
ing a combination of: (i) the pheromone value τnd which is the result of the
continual, long-term path sampling and learning activities of the ant agents,
(ii) the length in bytes to be sent of the link queue ln ∈ Li associated with
n, which is a heuristic instantaneous measure of congestion of the path going
through n, and (iii) the list of the visited nodes stored in the ants’ memory,
which is used to avoid loops. More precisely, each pnd is defined as:

pnd =
τnd + αln

1 + α(|N i| − 1)
(1)

if n /∈ Ps→i, and 0 otherwise. In practice, with this formula, the selection
probability of a next hop is calculated as the weighted sum of the estimate
τ , which is the result of a continual process of incremental learning, and the
instantaneous quality estimate l. Both τ and and l values are scaled between
0 and 1, in order to be summed consistently. α ∈ [0, 1] determines the relative
importance of the long-term versus the instantaneous view of the goodness of
each next hop decision. The denominator is just a normalization factor.

Once arrived at destination, the forward ant becomes a backward ant,
which is source-routed to s: it goes back to its source node by moving along
the same path Ps→d = [s, v1, v2, . . . , d] as before but in the opposite direction.
For its return trip the ant makes use of high-priority queues to quickly retrace
the path and update the routing information.

Arriving from neighbor j, at each visited node i ∈ Ps→d the backward ant
updates, for the choice of j as next hop, the routing information related to each
node δ ∈ Pi→d visited by the forward ant when traveling from i to d. Basically,
each node δ is considered as an intermediate destination. The backward ant
first evaluates the goodness of the followed path and of its sub-paths, and then
uses this evaluation to update the local routing information. Path evaluation
is done by comparing the traveling times experienced along the path with the
expected traveling times maintained in the statistical model Mi. From the
evaluation process, a path reinforcement value r ∈ [0, 1] is defined as:

r = c1
Wδ

Tiδ
+ c2F (Tiδ, μδ, σ

2
δ ,Wδ), (2)

where c1 and c2 are weighting factors, c1 + c2 = 1, and F is a real function
accounting for the statistical dispersion of the sampled values. In practice,
the sampled path (and its sub-paths) gets a reinforcement proportional to
how good the traveling time Tiδ just experienced by this ant is compared to
what has been observed in the recent past. At the visited nodes i, r is used
to update the pheromone entries as follows. The path to each “destination” δ
going through the used neighbor j is reinforced, while, by normalization, the
goodness of all the other alternatives is proportionally decreased:

τjδ ← τjδ + r(1 − τjδ),

τkδ ← τkδ − rτkδ, ∀k ∈ N i, k �= j.
(3)



120 M. Farooq and G. A. Di Caro

Fig. 1 shows the data structures used by the ants at the nodes, and illustrates
the two core phases of operations in the AntNet: the decision step of the
forward ant and the update process executed by the backward ant.

Fig. 1. The two core phases of AntNet shown at a node i ∈ P for an ant generated
in s and targeted to d: (a) the decision step of the forward ant, and (b) the update
and move step of the backward ant. The arrows help us to visualize from which
data structures the ant gets the information to decide the next step during the two
phases, and the logical sequence of updating steps happening during the backward
phase

Once the ant has returned to its source node, it is removed from the net-
work. Data packets are routed according to a stochastic decision policy similar
to that of the ants but based on the information contained in the local data
routing table R, which is derived from the pheromone table used to route the
ants preferring the best paths. In this way, data traffic is concurrently spread
over the best available multiple paths, resulting in an optimized utilization of
network resources and in automatic load balancing.

AntNet-FA [24, 32] (also known as AntNet-CO) is a minor but quite ef-
fective improvement of AntNet: forward ants also make use of high priority
queues. In this way, forward ants quickly get to the destination, and do not
need to carry traveling times; it is the backward ants that calculate incremen-
tally the trip times while traveling backward. Coming from neighbor n, at
node i the backward ant estimates the time necessary to cross the link i → n
by looking at the number of bytes waiting in the lin queue. The link crossing
time Tin is obtained on the basis of a queue depletion model:

Tin =
lin
bin

+ din, (4)

where b is the link bandwidth and d is its propagation delay. The adopted
model is simple but also quite reliable. AntNet-FA’s strategy on the one hand
permits to calculate source-destination trip times which are more up-to-date
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than those used by AntNet’s backward ants, and on the other hand it al-
lows a quicker gathering and spreading of routing information. This is a clear
advantage in the case of large topologies and quickly changing input traffic.

AntNet’s authors have evaluated their algorithm on the basis of a relatively
large number of simulation experiments using a custom network simulator.
The algorithm has been tested on a variety of different scenarios based on
different topologies with number of nodes ranging from few units to 150, and
considering UDP traffic patterns with different geographical and generation
characteristics. Throughput, 90th percentile of packet delays, and routing over-
head have been chosen as performance indices. The reported experiments show
that AntNet robustly outperforms in terms of throughput and delay several
different dynamic state-of-the-art algorithms: Q-routing [9], PQ-routing [19],
Shortest Path First (SPF) [73], Dynamic Bellman-Ford [115], and OSPF.
The improvement in performance is achieved without increasing the routing
overhead. Moreover, AntNet-FA outperforms AntNet, with the difference be-
coming larger with increasing network size.

5.3 ABC: The Main Reference Algorithm for Connection-Oriented
Networks

Schoonderwoerd et al. (1996) [112, 113] were the first to apply the ACO
ideas to routing and load-balancing problems in networks. More precisely,
they considered a telephone network in which the connection between sender
and receiver is explicitly established by reserving a virtual circuit. In their
network model, each node is a crossbar switch and can handle only a limited
number of simultaneous calls. Connection links are seen as full-duplex channels
with infinite capacity. Therefore, network bottlenecks are nodes’ capacities.
This means that the network is cost-symmetric: the congestion status over an
end-to-end path is the same in both directions since it only depends on the
spare connection capacity at the nodes (e.g., see [56]). The proposed routing
algorithm, named Ant-based control (ABC), aims at distributing the calls
over multiple switches (i.e., load balancing) to minimize the number of calls
that cannot be routed because of congestion.

ABC and AntNet share the same general organization and principles. The
main differences between the two algorithms are due to the differences ex-
isting between the two network scenarios that have been addressed. In ABC
ants move over a control network isomorphic to the one where the calls are es-
tablished. In the adopted model the system evolves synchronously in discrete
steps. Next hops are selected according to a random proportional or random
uniform rule, as in AntNet, but taking into account only pheromone values;
no heuristic correction is used. Arrived at a node, an ant waits ΔT steps,
defined as a function of the spare node capacity ΔC,

ΔT = Ke−aΔC , (5)
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with K and a real constants, K � a, and increases in this way its age. This is
equivalent to what happens in AntNet, where forward ants wait in the local
data queues, with a consequent increase in their traveling time. Equivalently,
the age is used in ABC to asses the quality of the ant path: an old ant is
associated with a congested path. Pheromone entries are updated using the
ant age T as follows. If s is the source and d the destination node of a traveling
ant, after crossing the control link i → j the probabilistic pheromone table T j

at node j is immediately updated using the total ant age T . A reinforcement
r inversely proportional to T is assigned to the normalized entry τis in T j :

r = a/T + b, (6)

where a and b are small constants dependent on network characteristics. The
updating formula for the τ values is the same as in AntNet (Eq. 3). The main
difference with AntNet in this respect consists in the fact that the pheromone
table is updated during the forward journey in the backward direction of the
source node s. This way of proceeding is justified by the fact that the network
is cost-symmetric, such that the cost (level of congestion) of a path is the same
in both directions. Therefore, at node j the ant age is a sound measure of the
quality of the reverse ant path j → s. In ABC ants do not need to retrace the
path backward. Calls are routed according to a deterministic greedy policy
that always selects the best next hop. If the destination can be reached, a
circuit is established and the call can happen.

ABC’s performance has been tested in simulation considering the real
topology of the backbone of the British Telecom (BT) telephone network and
a number of different call patterns. Reported results show that ABC outper-
forms an agent-based algorithm developed for BT by Appleby and Steward
[1] and reacts better to changes in traffic.

5.4 Algorithms for Wired Connectionless Networks

In this section we review the main work concerning the application of AntNet,
ABC, and, in general, ant colony ideas to wired best-effort routing in connec-
tionless networks such as the Internet.

Subramanian, Druschel, and Chen (1997) [123]: Uniform Ant Algorithm

The authors consider generic cost-aysmmetric networks and provide an anal-
ysis of two algorithms; one is based on ABC, and the other is a very simple
one that makes use of so-called uniform ants. In both algorithms, ants make
routing table updates in the reverse direction of their motion: arriving at node
j from node i, an ant originally launched from s updates the τis entry of j’s
routing table using some measure cji of link cost calculated in j. The difference
between the two algorithms consists in the fact that uniform ants wonder in
the network with no specific destination and make next hop selections blindly,
without relying on pheromone. The core idea behind uniform ants is that sim-
ple unbiased exploration is a means to adapt to any change in the network,
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especially failure. Since they sample all the paths with equal probability, this
results in their setting up a fully multi-path system. Moreover, the fact that
they have no destination makes them potentially useful also in ad hoc networks
in which node identifiers are not globally known in advance. The authors pro-
vide some theoretical proofs of asymptotic convergence of the two algorithms
under stationary link costs. Simple simulation experiments considering small
topologies show that the two approaches are more or less equivalent and com-
parable to simple link-state and distance-vector algorithms. The downside of
the simple and general mechanism of uniform ants consists in the fact that its
efficacy and efficiency is expected to dramatically decrease with the increase
in network size. In some sense, the core idea behind ACO is precisely to find
optimized ways to implement biased exploration and/or deal with failures,
rather than rely on blind mechanisms.

Heusse et al. (1998) [65, 66]: Cooperative Asymmetric Forward (CAF)

CAF extends ABC’s strategy for step-by-step updating in cost-asymmetric
networks. In CAF, when a data packet arrives at node i, the arrival time ti
is written in the packet. After arriving at j from i at time tj , the total time
elapsed in going from i to j, tij = tj − ti, is written in j . An ant hopping
from j to i reads the tij information in j and moves it to i, where it is used
to update the local estimate for the time to travel from i to j. Since the ant
is doing this for all the nodes along its path, the estimate of the travel cost
from i to all the nodes the ant has visited so far can also be updated and
used to update step-by-step the pheromone tables in the direction opposite
to the ant motion, as in ABC. Clearly, if an ant arrives some time after the
data packet, the information carried back by the ant might be out of date.
The authors tested CAF under some static and dynamic conditions, using
the average number of packets waiting in the queues and the average packet
delay as performance measures. In [65] they compared CAF to an algorithm
very similar to an earlier version of AntNet [26] and to Q-routing. Results
were encouraging and under all the test situations CAF outperformed its
competitors. In [66] the effectiveness of the approach for load balancing was
favorably compared to that of more classical approaches.

Van der Put and Rothkrantz (1998) [132, 131]: ABC-backward

ABC-backward is designed as a combination of the basic ABC structure and
formulas with the forward-backward updating strategy of AntNet. The au-
thors have experimentally verified that ABC-backward has a better perfor-
mance than ABC on both cost-symmetric and cost-asymmetric networks.

Oida and Kataoka (1999) [94]: DCY-AntNet, NFB-Ants

The authors improved an earlier version of AntNet [26] in which the heuris-
tic term based on the instantaneous status of the data link queues was
not included in the selection formula (Eq. 1). Without this dependency on
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the status of the queues, AntNet will suffer from what is termed stagna-
tion in the ACO jargon: once the pheromone value τnd of any next hop
link of a neighbor reaches 1 the routing tables get “locked”. In ACO algo-
rithms for combinatorial problems this problem is bypassed by applying at
each time step t a sort of pheromone evaporation to all pheromone entries:
τnd(t + 1) = ρτnd(t), ρ ∈ [0, 1]. The use of an evaporation mechanism al-
lows us to keep good levels of exploration at any time. The authors of [94]
modified pheromone table updating rules to avoid the locking behavior. Their
algorithms, DCY-AntNet and NFB-Ants, upon comparison with the considered
earlier version of AntNet performed much better under challenging situations.

Doi and Yamamura (2000) [40, 41]: BNetL

These authors also proposed a few additional heuristics to avoid the same
locking problem addressed by Oida and Kataoka, but this time considering
AntNet-FA, which is actually lock-free. Consistently, their algorithm showed
a performance equivalent to that of AntNet-FA.

Baran and Sosa (2000) [3]: Improving AntNet-FA

These authors have introduced several modifications to AntNet-FA: (i) instead
of starting from a uniform pheromone distribution among all the available
next hops for all destinations, for the destinations coinciding with the actual
neighbors, pheromone is explicitly initialized to give a much higher selection
probability to the shortest, one-hop, route; (ii) assuming the existence of a
mechanism that can locally detect and notify a link failure, the pheromone
values for the next hop associated with the currently unavailable link are ex-
plicitly set to zero, which makes the algorithm explicitly failure-resilient ; (iii)
so-called uniform ants adopting a uniform random decision policy as in [123]
are introduced to avoid the stagnation effect (however, as mentioned above,
AntNet-FA does suffer from this, and therefore the introduced mechanism just
helps to increase exploration); (iv) for the purpose of better exploiting the best
paths, regular ants implement greedy deterministic decisions instead of ran-
dom proportional ones, which reduces exploration (counterbalancing the effect
of using uniform ants) and raises the probability that ants and data packets
get trapped in long-lasting loops; (v) in order to limit routing overhead, the
number of ants concurrently active in the network has been arbitrarily lim-
ited to four times the number of the links; unfortunately this can also impair
the responsiveness of the algorithm and it is not precisely controllable in a
distributed way.

Fenet and Hassas (2000) [54, 55]: Load-Balancing System

This work aimed at developing a novel multi-agent system for multiple-criteria
load-balancing on a network of processors. The proposed system, which con-
sists of both static and mobile agents, shows general characteristics similar to
those of the previously mentioned ACR framework.
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Michalareas and Sacks (2001) [85]: Deterministic Simplified AntNet

In this work the authors replaced the stochastic decision policy of AntNet
with a deterministic greedy policy and did not use the heuristic based on queue
lengths. This deterministic version of AntNet has been compared in simulation
to OSPF on small tree, ring, and star topologies, and by considering FTP
traffic using TCP Tahoe. According to the reported results, under stationary
traffic conditions both the algorithms show equivalent performance.

Kassabalidis et al. (2002) [71]: Adaptive-SDR

This algorithm is derived from AntNet but makes use of a hierarchical or-
ganization by structuring the network into clusters using a centralized K-
means algorithm. Once the partition process is completed, the algorithm
maintains inter-clustering and intra-clustering routing tables at each node.
Multiple colonies of ants are used to discover and maintain these different
routing tables. In this manner the number of ants which need to be gen-
erated is significantly reduced because a node only maintains routes to the
nodes inside the cluster and not to all the nodes in the network. The authors
have compared Adaptive-SDR with a custom, non-standard, implementation
of AntNet in which data are routed using a deterministic greedy policy, and
with OSPF and RIP. Reported simulation results show that Adaptive-SDR
achieves the best results with regard to throughput and average delay. The
experiments were conducted on 16- and 48-node network topologies using the
NS-2 simulator [93]. The same authors provided in [70] a brief overview of
swarm intelligence for routing, basically presenting ACO approaches.

Lang, Zincir-Heywood, and Heywood (2002) [76, 77]: AntNet vs. Distributed
Genetic Algorithms

The authors have benchmarked AntNet and their GA-agent (2002) [78], based
on a distributed genetic algorithm architecture, against several dynamic sce-
narios considering the 56-node topology of a former backbone of the Japanese
company NTT Communications. AntNet was found to be able to deliver the
best routing performance provided that complete and up-to-date global infor-
mation on the number and identifiers of the reachable network nodes is given
as an input to the algorithm. On the other hand, the GA-agent algorithm,
which does not require a priori global knowledge, is shown to provide a perfor-
mance which is between that of AntNet with and without global information.

Yang et al. (2002) [155]: AntNet on a Real Network

Differently from all previous works, which were based on simulation, these
authors implemented and studied AntNet on a real network, a five-node LAN
of Windows-based machines using the TCP/IP protocol. To shorten imple-
mentation time, the algorithm was actually implemented at the application
layer, and not at the network layer. The authors made a study of the relative
merits of different ways to define the reinforcement parameter r (see Eq. 2),
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which is central to the stable operation of the algorithm. They observed that
the case of constant reinforcements leads to slow but dependable performance,
whereas adaptive reinforcements might bring better performance but appear
to be sensitive to the window length w used for statistics.

Doi and Yamamura (2004) [42]: Loop-Free AntNet

This work addresses two important aspects that have been neglected in most
of the other mentioned works: (i) the fact that the Internet has a hierarchical
structure and shows power-law properties regarding its topology, and (ii) a
routing algorithm should provide some guarantees in terms of being loop-free.
The authors proposed a loop-free variant of AntNet-FA in which forward ants
explicitly avoid considering for next hop selection all the nodes previously
visited. Both the original AntNet-FA and the loop-free variants have been
tested on a set of hierarchical, scale-free, Internet-like topologies, and it has
been found that the topological characteristics have a significant impact on
the relative performance of the two algorithms.

Verstraete et al. (2006) [135]: AntNet on a Real Network

These authors have implemented AntNet on a physical network of five routers
and two hosts. The authors ran extensive tests to tune AntNet’s parame-
ters and extend and modify the basic algorithm to make it work properly in
a physical network. AntNet’s performance has been compared to OSPF for
throughput and failure adaptivity. In terms of throughput, AntNet largely
outperformed OSPF in all the tested situations. On the other hand, since
AntNet has no built-in mechanism to deal explicitly with topological failures,
it recovers from failures slower than OSPF. The authors added a simple mech-
anism to overcome this problem, and were able to obtain significantly better
performance than OSPF also with respect to topological failures.

Dhillon and Van Mieghem (2007) [23]: AntNet Performance Analysis

This work aimed at getting a deeper understanding of the properties of
AntNet. The authors have made a performance analysis of AntNet comparing
it with a centralized Dijkstra’s shortest-path algorithm. The reported simula-
tions show that the performance of AntNet is in general comparable to Dijk-
stra’s algorithm. However, under varying traffic loads AntNet adapts better
to the changing traffic and outperforms shortest-path routing.

Gadomska and Pacut (2007) [57]: AntNet with TCP and UDP

It is well known that the TCP, the Internet transport protocol, can show
performance degradation in the case of arrival of out-of-order packets. This
might happen because of packet losses, or when an adaptive multi-path routing
algorithm is used at the network layer, or when the network is undergoing
repeated topological modifications. In this work, the authors have studied
the effect on performance of using an adaptive multi-path routing algorithm
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like AntNet at the network layer, together with either UDP or TCP at the
transport layer, while the majority of the previously mentioned works are
all based on the use of UDP. The authors have run a number of simulation
experiments using different realistic network topologies, input traffic, and TCP
implementations. Reported results show that while TCP sets higher demands
than UDP on the adaptation processes, it is still possible to improve network
performance with the use of an adaptive algorithm at the routing layer. In
some cases the use of TCP can even improve adaptation time.

5.5 Algorithms for Wired Connection-Oriented Networks

In this section we review the main work concerning the application of ACO
ideas to wired connection-oriented networks such as telephone networks and
IP networks using virtual circuits (but not explicitly providing QoS).

Di Caro and Dorigo (1998) [31]: AntNet-FairShare (AntNet-FS)

Starting from their AntNet-FA, the authors have derived a novel model for
fair-share routing and flow control in virtual circuit networks. In their model,
for each flow a virtual circuit is allocated and bandwidth is reserved. How-
ever, the allocated bandwidth is not that requested by the session; it is the
maximum bandwidth that can be provided at the moment the session is ac-
tive and on the basis of a fair-share distribution of the bandwidth among the
users. In AntNet-FS, on-demand mechanisms for session setup are added to
the usual proactive ant generation. On the arrival of a new traffic session, a
forward setup ant is reactively generated to find and reserve one or more paths
for the session. During its journey toward the destination, it behaves like an
AntNet-FA’s forward ant, except for the fact that, if multiple equally good
alternatives exist at a node, the ant is replicated and sent over all the equally
good next hops. Moreover, the ant reads from the nodes the value of their
residual available bandwidth. The first setup ant arriving at the destination
goes back and allocates a virtual circuit with a reserved bandwidth that equals
the minimum, bottleneck, bandwidth available along the path, and that does
not exceed the bandwidth needed by the session. Further setup ants arriving
at the destination are allowed to go back and add virtual circuits only if their
trip time is comparable to that of the first ant and their path is sufficiently
disjoint from those of the circuits allocated so far. Each session is forced to
limit its data generation to not exceed its reserved bandwidth. On subsequent
session arrival or departure, bandwidth allocation is dynamically recalculated
and the sessions are notified in order for them to adjust their data rates.

White, Pagurek, and Oppacher (1998) [152, 153, 154]: ACO, Pheromone
Evaporation, and Genetic Algorithms

These authors described several models and implementations for routing and
path finding based on ACO [152, 153] or, more generally, on swarm intelli-
gence [154]. The systems they proposed have an architecture which is very
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similar to the one of AntNet-FS [31] (described in Sect. 5.6) but make use of
pheromone-updating formulas which are adapted from Ant System [47], one of
the earlier ACO implementations for the traveling salesman problem. In par-
ticular, they imported from Ant System the notion of pheromone evaporation
(see also Sect. 5.4) to sustain path exploration. The authors considered static
and dynamic scenarios, as well as centralized and distributed ones. They con-
ducted experiments on small topologies, and results show that the proposed
algorithms are able to compute shortest paths in the considered situations.
In [152] they used a genetic algorithm to dynamically adapt the parameters
weighting the relative importance of pheromone and heuristic correction at
routing decision time. The use of the genetic algorithm in their ASGA routing
algorithm resulted in the improvement of performance.

Bonabeau et al. (1998) [8]: ABC and Dynamic Programming

This work extended ABC with smart ants derived from dynamic program-
ming: an ant launched from s, updates at node i the pheromone values for
all nodes visited during its trip, rather than just for the source node, as in
ABC. That is, all the sub-paths of the Pi→s path are updated. This is the
same strategy adopted in AntNet and in many other algorithms. Compared
to ABC ants, smart ants have a more complex behavior but, on the other
hand, a better performance is achieved with less agents.

Sandalidis, Mavromoustakis, and Stavroulakis (2001) [110, 111]: Improving
ABC with Anti-Pheromone

In their first work [111], these authors have studied the behavior of ABC
on a few different network topologies and have confirmed the earlier results
published by the authors of ABC. More recently, in [110] the same authors
further improved the original ABC: if the age of an ant arrived at node i is
greater than the maximum age calculated so far at i, then the pheromone
entry related with the ant path is decreased instead of being increased. This
is a form of so-called anti-pheromone similar to the repulsive pheromone used
by ants in nature to block unfavorable paths (see 4.1): in the presence of
experimental evidence that a sampled route is not good compared to other
available routes, its probability of being selected is explicitly decreased. In the
large majority of the other ACO implementations, after being sampled, the
selection probability of a route is always increased. The performance of the
algorithm has been compared to that of ABC for a topology of 25 nodes and
has shown a slightly better performance.

Sim and Sun (2003) [120]: Multiple Ant Colony Optimization (MACO)

In their work, the authors first presented an overview of ACO for routing and
load balancing and then proposed the MACO approach for load balancing in
connection-oriented networks. MACO is based on the use of multiple colonies,
where each colony lays its own type of pheromone. An ant is expected to
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select paths marked by high values of pheromone of the type laid by the
colony the ant belongs to, and get repulsed by routes marked by high values
of pheromone laid by ants of other colonies. This anti-pheromone mechanism
is expected to be an efficient mechanism to find good multiple disjoint paths.
The use of pheromone repulsion to favor the discovering of disjoint paths was
earlier used by Navarro and Sinclair (1999) [91] to solve (static) problems of
routing and wavelength allocation in all-optical networks.

Heegaard, Wittner, and Helvik (2003) [63]: Cross-Entropy Ants (CE-Ants)

CE-Ants shares the same forward-backward structure of AntNet but makes
use of path-updating formulae derived from Rubinstein’s Cross-Entropy (CE)
optimization framework [107]. The CE method is based on the repeated sam-
pling of paths and on the consequent adaptive adjustment of γ, a parameter
that biases path sampling, to minimize the cross-entropy between the used
generation probabilities and the optimal importance sampling probabilities.
In the distributed version of the CE algorithm designed by the authors, path
sampling is implemented by the ants and is biased by the pheromone values.
CE formulae are used to define how pheromone values are updated. The au-
thors have also introduced the notion of elitist ants: only the best ants are
allowed to trace back and update pheromone tables (see [24], Sect. 4.3.2, for
a general discussion on the use and efficacy of elitist strategies in general
ACO implementations). CE-ants has been applied to virtual-path discovery
and failure management in dynamic connection-oriented and label-switched
IP networks offering some form of QoS. The authors have tested their ap-
proach considering the real backbone topology of Telenor, a major Norwegian
network provider. In [62] Heegaard and Fuglem implemented and tested their
system in a physical network using Linux routers.

5.6 Algorithms for Networks Providing Quality-of-Service

In this section we review the main work concerning the application of ACO
ideas to wired networks providing QoS.

Di Caro and Vasilakos (2000) [24, 39]: AntNet and Stochastic Estimator

Learning Automata (AntNet+SELA)

AntNet+SELA is intended for QoS routing in ATM networks. Ant path sam-
pling is complemented by the presence of node agents designed after stochastic
estimator learning automata (SELA) [89, 134]. Each node agent exploits the
information gathered by the ants to adaptively learn an effective routing pol-
icy for QoS traffic based on the use of a link-state routing table in addition to
the usual ant pheromone table. Stochastic learning automata have been used
in early times [90, 92] to provide fully distributed adaptive routing. One of
their main characteristics is that they learn by induction: no information is
exchanged among the controllers. They only monitor local traffic and try to
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get an understanding of the effectiveness of the implemented routing choices.
In AntNet+SELA, the static inductive learning component is enhanced by
using the ants as active learners that gather also non-local information to
keep up to date the link-state routing table to rapidly allocate resources for
multi-path QoS routing when requested.

In addition to the proactive ant generation as in AntNet-FA, at the arrival
of a new session, the node manager reactively generates a setup ant and a
group of path-probing ants. The setup ant behaves similarly to the setup ants of
AntNet-FS, with the difference that this time the ant searches for a path that
strictly meets the QoS requirements. The path-probing ants are source routed:
each node agent uses its link-state database to compute the first k paths with
minimum hop count that satisfy the QoS requests of the session, and assigns
each one of these paths to a different probing ant that will check at run-time
its availability and QoS consistency. According to the results provided by the
backward ants, the node agent decides whether or not to accept the session
and how to possibly split it over multiple paths. Unfortunately, the authors
ran only few preliminary tests to evaluate the efficacy of the proposed model.

Oida and Sekido (1999) [95, 96]: Agent-Based Routing System (ARS)

ARS is an enhancement of AntNet that supports both best-effort and QoS
routing based on an IntServ model with resource reservation and admission
control. A Weighted Fair Queueing algorithm distributes at the nodes the
capacity between best-effort and QoS traffic. The QoS constraints considered
are bandwidth and hop count. A real-time session can require one among n
predefined levels of bandwidth and a number of hops less than a maximum
value h. According to the basic AntNet scheme, from each node s ants are
proactively generated and sent toward a sampled destination with the aim of
finding a path with an available bandwidth that matches one of the n levels
and with a hop count less than h. Links with more residual bandwidth are
preferred when choosing the next hop. If a feasible path is found, it is reported
back to the source which stores it in a local cache that is kept up-to-date.
When a real-time session requires a QoS path, the session is admitted or not
according to the path information held in the cache. If a path that can meet
the QoS requirements is present, an ant is sent to probe it and reserve the
necessary resources. If the path is not there anymore, the session is rejected.
Simulation results on a 14-node network show a high efficiency using network
resources.

Michalareas and Sacks (2001) [84, 86]: Multi-swarm

The authors have exploited the main features of both AntNet and ABC to
design an algorithm for routing in multi-constrained QoS networks. The al-
gorithm provides soft QoS guarantees on end-to-end delay and bandwidth
constraints, or, in general, on additive (delay) and concave (bandwidth) con-
straints. Multi-Swarm deals with the two constraints adopting a multi-colony
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approach based on the use of two different swarms of ants, one for each con-
straint. The ants dealing with delay are in practice the same as in AntNet.
On the other hand, since bandwidth is a non-additive metric and it cannot
be directly measured from the ant, the authors have introduced a resource
monitor that locally calculates the average spare bandwidth available at the
links. When a bandwidth ant arrives at a node, it is artificially delayed for a
time inversely proportional to the spare bandwidth, similarly to what happens
in ABC. In this way, the bandwidth estimate is reduced to a delay estimate.
Simulation experiments for three simple topologies under uniform TCP traffic
show that Multi-Swarm has performance comparable to OSPF.

Tadrus and Bai (2003) [126, 127, 128]: QColony

QColony is an algorithm for QoS routing in multi-constrained networks de-
signed by extending and adapting AntNet behavior. QColony mostly addresses
the IntServ QoS model but its structure makes it suitable to be used with
other models such as DiffServ and MPLS. QColony categorizes network re-
sources (e.g., bandwidth) in sets of adjacent ranges, where each range can
fit a different QoS request from a user flow. For instance, if the resource is
bandwidth, and, starting from the value of 0 Mbit/s, the network categorizes
bandwidth requests in ten ranges of 10 Mbit/s each, a user QoS request of 35
Mbit/s can be fit by all the seven upper ranges. At each node, learning and
using good paths for each range is realized by associating with each range a
unique vector of pheromone variables. In practice, this vector corresponds to
the pheromone table normally used by AntNet-like algorithms to deal with
the case of best-effort traffic, which can be seen as a special case of QoS traffic
with no traffic differentiation. Therefore, QColony, like Multi-Swarm, main-
tains multi-pheromone tables. This is reminiscent of what happens in nature,
where different resources and events in the environment are dealt with differ-
ent types of pheromones (see Sect. 4.1). In addition to QoS tables, a best-effort
pheromone table is proactively maintained and used as in AntNet.

Upon receiving a QoS request, the ingress node determines the range suit-
able to satisfy the required QoS and reactively launches an allocator ant to
find and reserve the resources. Allocator ants adopt a greedy next hop selection
based on the pheromone values associated with the range they are looking for.
If available, network resources are smartly allocated to accommodate the QoS
request while at the same time leaving space for future requests. In addition
to the allocator ants, QColony makes use of several other types of ants, all im-
plementing greedy selections: (i) explorer ants are proactively generated and
have a behavior analogous to AntNet ants, but on their backward journey they
update pheromone entries associated with multiple ranges, (ii) soldier ants,
mimicking the behavior of soldier ants in nature that respond to potentially
harmful situations, are proactively generated to identify short backup paths to
be used in case of failures along the paths in use by running flows, (iii) main-
tenance ants are reactively generated when a path failure happens, in which
case they exploit the backup paths found by soldier ants to restore between
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the ingress and egress nodes the broken path. Using a custom simulator, the
authors have made a number of simulation experiments to test QColony’s
performance versus that of the previously mentioned ARS, a probing-based
reactive algorithm based on selective flooding [18], and QOSPF, which is a
reference algorithm in the QoS domain. For small topologies and under low
network traffic load the performance of the four algorithms is comparable,
while QColony’s performance is significantly better for large networks and
heavy traffic loads.

Carrillo et al. (2004) [16, 17]: AntNet-QoS

AntNet-QoS is based on a multi-pheromone extension of AntNet to support
QoS in a DiffServ network with m different classes of service for end-to-end
delay. For each class, every node holds a pheromone table, a data routing table,
and a vector of statistics, replicating in this way m times the data structures
held by best-effort AntNet nodes. Ants are generated per class of service:
they follow and update the pheromone table associated with their specific
class. Ants are routed with higher priority than data, but respecting class-
based queuing, such that the quality of their path reflects the class-specific
conditions. Preliminary results are promising.

5.7 Algorithms for Wireless Mobile Ad Hoc Networks

In this section we review ant-colony-inspired algorithms for MANETs. Most
of the implementations focus on the optimization of throughput and end-to-
end delays. On the other hand, we will see that the bee-inspired algorithm
discussed later emphasizes battery optimization in addition to throughput
and end-to-end delays.

Câmara and Loureiro (2000) [13, 14]: GPS/Ant-Like Algorithm (GPSAL)

These authors were among the first to propose an ACO algorithm for MANETs.
GPSAL is a location-based algorithm. It assumes and exploits the presence of
an on-board GPS device. The routing information is exchanged locally among
neighbors, and globally by sending forward ants to distant nodes addressed
geographically. Ants are propagated through a bandwidth-efficient flooding
algorithm. The algorithm achieves a similar performance with less routing
overhead compared to LAR [74], another location-based algorithm.

Matsuo and Mori (2001) [81]: Accelerated Ants Routing (AAR)

AAR is based on the work of Subramanian et al. (see Subsect. 5.4). In AAR,
uniform ants are equipped with a stack where the last n visited nodes are
stored. This allows them to update the pheromone tables for all the last
n intermediate nodes. The authors have compared AAR with AntNet, Q-
routing, and PQ-routing on a 56-node network and have shown its superior
performance and faster convergence.
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Guenes et al. (2002) [60]: Ant-Colony-Based Routing Algorithm (ARA)

ARA imports some basic aspects of AntNet into AODV. It is a purely reactive
algorithm in which both forward and backward ants set up the paths to the
nodes from which they arrive. Also data packets update the pheromone tables,
reducing the number of ants needed to sample existing paths. According to
simulation experiments, ARA’s performance turns out to be slightly better
than AODV’s but worse than DSR’s in highly dynamic environments.

Marwaha et al. (2002) [80]: Ant-AODV

In Ant-AODV, AODV is extended by a mechanism of proactive updating of
the routing tables based on uniform ants. This increases the chance that a node
or one of its neighbors will have a route to a destination when needed. The ants
randomly traverse the network and keep track of the last n visited nodes. The
results of simulation experiments indicate that Ant-AODV performs better
than AODV and a simple ant-based algorithm.

Baras and Mehta (2003) [4]: Probabilistic Emergent Routing

Algorithm (PERA)

These authors have introduced two routing algorithms for MANETs. The
first algorithm is a proactive one very similar to AntNet. Nodes maintain
pheromone entries for all destinations by periodically launching forward ants,
which take random decisions for unbiased exploration, and data packets are
deterministically routed over the paths with the highest quality. The large
routing overhead and the inefficient route discovery of this algorithm led to
PERA, which is a purely reactive algorithm not very different from AODV.
The forward ants are now flooded through the network toward their destina-
tions. This strategy leads to the dynamic discovery of multiple paths. However,
data packets are routed over the single best path available. The presence of
multiple paths is helpful in the quick recovery from link failures. The perfor-
mance of the algorithm is comparable to that of AODV according to a limited
set of simulation experiments.

Heissenbüttel and Braun (2003) [64]: Mobile Ant-Based Routing (MABR)

The algorithm proposed by these authors makes use of geographical partition-
ing of the node area and of pheromone exploiting geographical addressing.
The algorithm is intended for large-scale MANETs and is purely proactive.
Forward and backward ants are used to periodically check if the path to a
randomly chosen destination is functional and reflects the current state of the
network. Accordingly, paths followed by the ants are positively or negatively
reinforced. In addition, pheromone evaporation favors further exploration and
removal of out-of-date paths.
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Roth and Wicker (2003) [104, 105]: Termite

The Termite algorithm was actually inspired by the behavior of termite
colonies, which is indeed very similar to that of ant colonies. As a matter
of fact, Termite retains most of the main features of the general ACO meta-
heuristic such as pheromone tables, probabilistic decisions, and pheromone
evaporation. In Termite, forward ants are unicast and follow a random walk.
Backward ants do not necessarily follow the forward path backward, but are
also routed stochastically. Each data packet follows the path to its destina-
tion according to stochastic decisions based on the pheromone values, and
”drops” pheromone, indicating a path toward its source node. An exponen-
tial pheromone evaporation is introduced as a means of negative feedback to
prevent old routes from remaining in the routing tables. Termite is a hybrid
algorithm. Paths are discovered on demand by ants, but their goodness is
implicitly sampled by data packets in a proactive fashion. The behavior and
the properties of the algorithm have been studied using a formal analysis and
by simulation, showing better performance than AODV.

Di Caro, Ducatelle, and Gambardella (2004) [33, 34, 35, 36, 51]: AntHocNet

AntHocNet combines the typical path sampling behavior of ACO algorithms
with a pheromone bootstrapping mechanism analogous to that used in Bellman-
Ford algorithms (see Sect. 2), to effectively and efficiently learn pheromone
tables. This design results in superior performance at the expense of a rela-
tively low routing overhead. AntHocNet is a hybrid algorithm. It is reactive
in the sense that a node only starts gathering routing information for a spe-
cific destination when a local traffic session needs to communicate with the
destination and no routing information is available. It is proactive because as
soon as the communication starts, and for the entire duration of the commu-
nication, the nodes proactively keep the routing information related to the
ongoing flow up to date with network changes for both topology and traffic.

To capture the complexity of MANET environments, pheromone values
reflect the quality of next hop decisions in terms of a composite metric function
of: number of hops, traffic congestion, and signal-to-noise ratio (see [49] for
a study on the effectiveness of considering different sets of quality metrics to
define pheromone variables). This means that the algorithm tries to find paths
characterized by a minimal number of hops, low congestion, and good signal
quality between adjacent nodes.

When a source node s starts a communication session with a destina-
tion node d, and no pheromone information is available about how to reach
d, the node manager broadcasts a reactive forward ant. Ants are sent over
high-priority queues. At each node, the ant is either unicast or broadcast,
according to whether or not the current node has pheromone information for
d. If pheromone information is available, the ant stochastic decision policy πε

makes use of a random proportional rule as in AntNet to select its next hop.
Selection probabilities at node i are defined as: pnd = (τnd)β

∑
j∈Ni

d
(τ i

jd)β , where N i
d
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is the set of i’s neighbors over which a path to d is currently known, and
β ≥ 1 is a parameter which controls the exploratory behavior of the ants.
A node which receives multiple copies of the same ant only accepts the first
and discards the others. When a forward ant arrives at the destination, it
goes backward, updates the pheromone tables at the nodes, indicating a path
between s and d, and triggers the sending of data packets from the traffic
session. In this way, only one path is set up initially.

During the course of the communication session, additional paths are
added and/or removed via a proactive path maintenance and exploration mech-
anism. This is implemented through a combination of ant path sampling and
slow-rate pheromone diffusion and bootstrapping which mimics pheromone
diffusion in nature. Each node n periodically and asynchronously broadcasts
a sort of beacon message containing a list of destinations it has information
about, including for each destination d its best pheromone value τn

m∗d. A node
i receiving the message from n, registers that n is its neighbor, and for each
destination d listed in the message, it derives an estimate of the goodness of
going from i to d over n, combining the cost of hopping from i to n with the
reported pheromone value τn

m∗d. The authors call the obtained estimate bi
nd

bootstrapped pheromone, since it is built by “bootstrapping” on the value of
the path the quality estimate received from an adjacent node

If i already has a pheromone entry τ i
nd in its table, bi

nd is just treated as an
update of the goodness estimate of a known, reliable path, and is used directly
to replace τ i

nd with an up-to-date estimate. This equals a path maintenance
operation. If i does not have yet a value for τ i

nd, bi
nd could indicate a possible

new path from i to d over n. However, this path has never been explicitly tried
out by an ant from i, such that due to the slow multi-step process it could have
disappeared, or it could contain undetected loops or dangling links. The path
is therefore not safe to use for data forwarding before being checked. This is
the task assigned to proactive forward ants, which behave similarly to reactive
forward ants but make use of both regular and bootstrapped pheromone on
their way to the destination. This way, promising pheromone is checked out,
and if the associated path is there and has the expected good quality, it
can be turned into a regular path available for data. This guided exploration
mechanism increases the number of paths available for data routing, which
grows to a full mesh, and allows the algorithm to exploit new opportunities
in the ever-changing topology. Stochastic decisions are used to spread data
packets over multiple paths with a strong preference for the best ones. Link
failures are explicitly dealt with using a local path repair process that tries to
exploit the additional paths made available by the proactive mechanism, or
via the generation of ant agents carrying explicit notification information.

AntHocNet’s performance has been extensively evaluated through simula-
tions against state-of-the-art algorithms under a number of different MANET
scenarios for both open space [2, 33, 34, 49, 35, 50, 51] and realistic urban
conditions [36]. The authors studied the behavior of the algorithm under dif-
ferent conditions for network size (ranging from 50 to 1,000 nodes), connec-
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tivity, change rate, data traffic patterns, and node mobility. The performance
of the algorithm has been assessed relative to two classical MANET routing
algorithms, AODV and OLSR, using the QualNet commercial simulator [101].
In the reported experiments, AntHocNet robustly outperforms the two com-
petitor algorithms in terms of general efficacy, and in terms of adaptivity,
robustness, and scalability. Superior performances were obtained efficiently
introducing only a relatively small overhead, usually smaller than that intro-
duced by the two other algorithms.

Rajagopalan and Shen (2005) [102, 103]: Ad-Hoc Networking with Swarm

Intelligence (ANSI)

This work is based on earlier works of Shen [116, 117, 118]. ANSI is a reac-
tive algorithm. Forward ants are reactively generated to look for a route for a
new session or to repair a route after a link failure. They are deterministically
flooded toward the destination. Only the first ant arriving at the destination
is converted to a source-routed backward ant that sets up the route. At each
node i, the pheromone entry τnd ∈ T i represents a weighted measure of how
many times the link i → n has been selected to go to d. Pheromone and rout-
ing tables are updated by both forward and backward ants, indicating and
reinforcing the route for all nodes toward the starting node. Also the arrival of
a data packet triggers an update, but only of the pheromone table. Contrary
to what usually happens in ant algorithms, pheromone and routing tables are
not used for ant decisions. Pheromone tables are used to derive determinis-
tic single-path routing tables for data packets. At node i, the next hop rd to
be used for data bound for d is the next hop which has the highest value
pnd = τα

ndη
β
ndψnd, ∀n ∈ N i, where ηnd is a heuristic measure of the inverse of

the distance to d through n, ψ is an inverse heuristic measure of the conges-
tion along the path, and α and β are appropriate weighting factors. Periodic
sending of Hello messages is used to keep neighboring information up-to-date.
The combination of Hello information and ant pheromone updates provides
multiple paths for a destination, but only the best one is deterministically
used to route data packets. Pheromone evaporation for all pheromone entries
is triggered after each update to favor removal of unused and bad paths, which
amounts to negative reinforcement. ANSI was shown to perform better than
AODV in simulation experiments involving 50 mobile nodes.

6 Routing Protocols Inspired by Bee Colony Behaviors

Bee colony behaviors have driven the design of routing algorithms more re-
cently than ant colony behaviors. Most of the work in this has been done by
Farooq and colleagues. They developed two main algorithms, BeeHive, for
wired IP networks, and BeeAdHoc, for MANETs. From these two reference
algorithms they have further derived other algorithms, addressing a number
of different network constraints and scenarios. In the following we describe
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in some detail the characteristics of the two main reference algorithms and
provide a brief discussion of also the additional algorithms and studies based
on them. A peculiar characteristic of all this work consists in the fact that
the algorithms have been designed according to the guidelines of the so-called
natural engineering framework [141]. That is, they have been designed keep-
ing in mind the technical constraints of physical networks to prevent making
design assumptions which hardly would hold once the algorithm is being im-
plemented on a real network. The efficacy of this way of proceeding is wit-
nessed by the fact that the implementation of these algorithms in physical
networks of Linux routers does not significantly differ at the algorithmic level
from their implementation in network simulators, and, even more importantly,
their performance in physical networks is consistent with what is observed in
simulation experiments [52, 61].

6.1 The BeeHive Algorithm for Wired Connectionless Networks

The BeeHive algorithm [52, 141, 142, 148] is based on a meta routing frame-
work similar to that of ACO routing algorithms: paths are constantly tried
out to discover new routes and adapt to changing network conditions, and
data are spread over multiple paths to optimize network performance and
resource utilization. This is achieved with a strategy that mimics bee forag-
ing behaviors. More specifically, BeeHive is built around two types of agents,
short distance and long distance bee agents, which are proactively generated
at the nodes and are designed after the way bee foragers respond to waggle
dances. Both types of agents undertake the same responsibility: exploring the
network and evaluating the quality of paths that they traverse to update node
routing tables. However, short distance bee agents are allowed to move only
up to a restricted number of hops. On the other hand, long distance bees have
to collect and disseminate routing information in the complete network. This
two-level agent model is intended to quickly collect routing information while
minimizing both processing and bandwidth overheads. BeeHive adopts a hi-
erarchical organization of the network that matches the use of two different
types of agents with different search ranges. The network is subdivided into
foraging zones and foraging regions. A foraging zone is defined as the set of
nodes around a given node from which short distance bee agents can reach
the node. The same node may belong to foraging zones of many nodes. The
network is also viewed as a collection of clusters of non-overlapping foraging
regions, in which a node belongs to just one region. Each foraging region has
a representative node, which is the node with the lowest IP address in the
region. Its role is to launch long distance bee agents. Each node maintains
routing information for all nodes within its foraging zone, and for representa-
tive nodes of the foraging regions. If the destination of a packet does not lie
within the foraging zone of a node, then it is forwarded along a path leading
to the representative node of the foraging region containing the destination



138 M. Farooq and G. A. Di Caro

node. Informally, the behavior of BeeHive and its main characteristics can be
summarized as follows:

1. All nodes start the foraging region formation process during a start-up
phase. They try to form a foraging region with the same address as their
own and make themselves the representative node of the foraging region.
They launch a first generation of short distance bee agents to propagate
their identifier in their neighborhood.

2. If a node receives a short distance bee from a node whose representative
node’s address is smaller than that of the receiving node, then it discon-
tinues its efforts to be a representative node and joins the foraging region
of the node with the smaller address.

3. If a node later on learns that its representative node has joined another
foraging region, then it repeats the region formation actions of Step 1.

4. Nodes keep on launching generations of short distance bee agents by fol-
lowing Steps 1–3 until the network is subdivided into disjoint foraging re-
gions and overlapping foraging zones. Finally, each node informs all other
nodes in the network to which it belongs. This step is repeated every time
foraging regions are reshaped because of link or node failures.

5. At the end of Step 4, the algorithm enters into a normal phase in which
each non-representative node periodically sends out a short distance bee
agent by broadcasting it to each one of its neighbors.

6. When a replica of a bee agent is received at a node, it updates the local
routing information and is broadcast again to all the neighbors except
the one it was received from. This process continues until the lifetime of
the agent has expired or the replica arrives at a node which has already
received a copy of it.

7. Representative nodes only launch long distance bee agents that undergo
the same process as the short distance ones but have longer lifetimes.

8. Each node dynamically maintains routing information for reaching nodes
within its foraging zone and for reaching the representative nodes of for-
aging regions. According to this hierarchical organization, a node routes
a data packet whose destination is beyond its foraging zone along a path
toward the representative node of the foraging region containing the des-
tination node. More specifically, each node i maintains three types of
routing tables: the Intra Foraging Zone (IFZ), the Inter Foraging Region
(IFR), and the Foraging Region Membership (FRM) table. The Intra For-
aging Zone routing table Ri is organized as a matrix of size |Di| · |N i|,
where Di is the set of destinations in the foraging zone of node i and N i

is the set of neighbors of i. Each entry rjd is a pair of queuing delay and
propagation delay (qjd, pjd) that a packet will experience traveling to des-
tination d via neighbor j. The Inter Foraging Region routing table stores
the queuing and propagation delay values for reaching the representative
node of each foraging region through each of its neighbors. The Foraging
Region Membership table provides the mapping of known destinations



Routing Protocols Inspired by Insect Societies 139

to foraging regions. Thanks to the hierarchical organization, the overall
memory occupancy of routing information at each node is reduced with
respect to the case of a flat organization, as the one adopted in many ACO
implementations, that would require O(|N | · |D|) entries.

9. A bee agent launched from s, traveling across the network incrementally,
collects path information in the form of the trip time estimate tis for
reaching the source s from the current node i over the used link j. The
main difference lies in the fact that path exploration by bee agents does
not rely on a stochastic policy but is realized according to a deterministic
scheme based on repeated broadcasting (i.e., flooding). Bee agents use
high-priority queues for quick dissemination of routing information.

10. The core mechanism at work in BeeHive is the direct agent-to-agent com-
munication model (see Fig. 2) inspired by the bee behavior. In this topol-
ogy, three paths exist between node k and node s. Node s launches three
replicas of the same agent on three paths and they arrive at node k through
different paths. Each replica uses the estimation model described above
to estimate the queuing delay and the propagation delay. The replica that
arrived earliest is allowed to continue its exploration further while other
replicas are killed. However, the other replicas do communicate their es-
timates to the replica that is allowed to continue the exploration. Using
the communication paradigm explained in Fig. 2 the replica calculates pks

and qks, which incorporate the estimates of all replicas proportional to the
quality of the paths, g1s, g2s, g3s (to be shortly defined in Step 11), which
they traversed. Once this replica continues its exploration of the network,
it tells the other nodes that there exists a path from k to s through which
a packet could reach s with a propagation delay of pks and queuing delay
of qks. The other nodes forward data packets to node k based on the qual-
ity, which is a function of pks and qks. Once the data packet is at node
k it can take any one of the three paths based on their quality, which is
calculated based on the delay estimates of bee agents.

11. The next hop for a data packet is selected according to a stochastic rule
that depends on the quality of each next hop. The quality of the path
is a function of the cumulative queuing and propagation delays to reach
the desired destination. The cumulative values are a result of the bee-
inspired direct agent-to-agent communication model as depicted in Fig. 2.
The estimated goodness of a neighbor j of node i (i has N neighbors) for
reaching a destination d is gjd and defined as

gjd =
1

pjd+qjd
∑N

k=1(
1

pkd+qkd
)
, (7)

where pjd and qjd are respectively propagation and queuing delays esti-
mated by the bee agents for reaching destination d via neighbor j of node
i. The fundamental motivation behind this definition is to approximate
the behavior of a real network. When the network is experiencing a heavy
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p1s, q1s

sk

p2s, q2s

p3s, q3sm

pmk, qmk

pks = g1s*p1s + g2s*p2s + g3s*p3s
qks = g1s*q1s + g2s*q2s + g3s*q3s

pmk, qmk

m sk

pms = pmk + pks
 qms = qmk + qks

m s

Fig. 2. Communication paradigm of bee agents

network traffic load, the queuing delay plays the primary role in the delay
of a link. In this case it is trivial to say that qjd � pjd, and the goodness

calculation becomes gjd ≈
1

qjd∑ N
k=1

1
qkd

. When the network is experiencing a

low traffic load, it is the propagation delay that plays an important role in

defining the latency of a link. Since qjd � pjd, we obtain gjd ≈
1

pjd∑ N
k=1

1
pkd

.

Figure 3 provides an exemplary working of the flooding mechanism. Short
distance bee agents can travel up to two hops in this example. Each replica of
the shown bee agent (launched by node 9) is specified with a different trail to
identify its path unambiguously. The numbers on the paths show their cost.
The flooding algorithm is a variant of the breadth first search algorithm. By
following the above-mentioned Steps 1–4 the network is partitioned into two
foraging regions with representative nodes 1 and 6 respectively. The foraging
zone of node 9, which spans over both foraging regions, consists of nodes 2–8.
The bee agents utilize the following estimation model for the trip time tis
that a packet would experience to reach s from current node i coming from j
(protocol processing delays are ignored):

tis ≈ lij
bij

+ txij + dij + tjs (8)

where lij is the size of the queue (in bits) for neighbor j at node i, bij is the
bandwidth of the link between node i and neighbor j, such as lij/bij = qij ,
txij and pdij are respectively transmission and propagation delays of the
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link between node i and neighbor j (i.e., txij + pdij = pij), and tjs is the
trip time from j to s. Bandwidth and propagation delays of all links of a
node are calculated at the beginning by transmitting back and forth so-called
hello packets. Bee agents have a fixed size of 48 bytes and currently they are
launched after every second or when a node has received a certain number of
packets (240 in the performed experiments).
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Fig. 3. Illustration of the working of the BeeHive algorithm

BeeHive has been evaluated in a testing framework designed to provide a
robust evaluation of generic SI-based routing algorithms over a large set of
operational scenarios [52, 143]. The authors have shown that with the help of
this framework, they were able to discover some previously unknown behavior
of the considered routing algorithms. The framework considers a number of
auxiliary parameters that provide valuable insight into the performance vs.
cost benefits of the routing protocols. The authors compared BeeHive, AntNet,
AntNet-FA, DGA [76], and OSPF. Reported simulation results (obtained by
custom implementations of the algorithms using the OMNeT++ simulator)
showed that BeeHive was able to deliver at least the same performance than
AntNet, and solidly outperforms OSPF and DGA under heavy network traffic
loads, while having a performance comparable to OSPF under low loads. An
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additional positive aspect of BeeHive is that it requires smaller routing tables
and less computational resources than the considered competitors.

Harsch, Wedde, and Farooq (2005,2006) [52, 61]: BeeHive Implementation
in Linux Routers

BeeHive has been also tested in a physical network. In fact, the authors im-
plemented BeeHive inside the network stack of Linux routers and then tested
and compared its performance to OSPF in a relatively small network of Linux
routers using different types of synthetic and real-world traffic applications
such as FTP and Voice over IP (VoIP) under UDP and TCP transport pro-
tocols. Results show that BeeHive can not only significantly help in reducing
the download time of a file but also provide a better quality of service to
VoIP sessions. Moreover, they have also shown that the performance of Bee-
Hive in real-world networks is consistent with its performance in simulations.
This work, confirming previously cited work on the physical implementation
of ACO protocols, shows that an efficient and effective implementation of SI-
based routing algorithms is possible, and it is highly competitive with current
state-of-the-art algorithms.

6.2 Other Algorithms for Wired Networks Based on BeeHive

Wedde, Timm, and Farooq (2006) [149, 150]: BeeHiveGuard, BeeHiveAIS

The authors of these works have been the first to extensively analyze different
types of security threats that malicious nodes can launch by manipulating
the identity of agents or their routing information in networks controlled by
SI-based algorithms. All these attacks can significantly degrade the network
performance and compromise network operations. As a first step, they used a
digital-signature-based security framework, BeeHiveGuard, to secure identity
of a bee agent and of its routing information. The conclusion of the work was
that BeeHiveGuard was able to counter different types of attacks but the pro-
cessing complexity of the bee agents in BeeHiveGuard increased by more than
52,000% and the control overhead increased by more than 200% as compared
to BeeHive. Then, the authors proposed a novel solution, BeeHiveAIS, based
on Artificial Immune System (AIS) ideas, that provided the same security
level as the digital-signature-based framework but with processing and con-
trol overheads which are approximately 200 and 20 times respectively smaller
than BeeHiveGuard. This is an important achievement toward the definition
of a SI-based security protocol with manageable processing and communica-
tion costs.

Brüntrup and Farooq (2006) [12]: BeeHivePlus, BeeHiveQoS

In BeeHive, data packets are spread stochastically over the available multiple
paths according to their estimated quality. This is a behavioral trait common
to many other algorithms reviewed in this chapter. While on the one hand this
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way of proceeding has some clear benefits, on the other hand, in some situa-
tions requiring strict and predictable performance, such as in QoS networks,
this can result in unwanted side effects such as short-lived loops and jitter
fluctuations. BeeHivePlus overcomes these potential problems by utilizing the
concept of waterfall routing, in which only those neighbors that are nearer, in
terms of hops, to the destination than the existing node are considered to be
selected as a next hop . As a result, a packet always moves in the direction
of the destination and loops are implicitly avoided. The authors have used
the concept of temporal stability of routes, i.e., routing decisions for a desti-
nation remain fixed in the inter-arrival time period between two successive
bee agents from the same destination. This feature ensures that packets for a
short time period follow the same path. Consequently, it results in significant
reduction in jitter fluctuations that make BeeHivePlus comparable to that
of a single-path algorithm such as OSPF. However, in spite of having these
desirable features of loop freedom and low jitter, BeeHivePlus still provides
similar performance as BeeHive. The same authors derived from BeeHivePlus
a novel algorithm, BeeHiveQoS, for QoS networks. The core mechanism in
BeeHiveQoS is an intelligent hierarchical packet scheduler, which can be em-
bedded in BeeHivePlus as well as in other schemes, and which provides soft
guarantees to QoS sensitive applications. The results of the experiments con-
ducted on network topologies of up to 150 nodes confirm that BeeHiveQoS is
able to provide guarantees to QoS-sensitive applications.

Zahid, Shahzad, Ali, and Farooq (2007) [156]: Formal Framework for
Performance Analysis
The authors have proposed a formal framework for analyzing the behavior of
the BeeHive protocol. The framework utilizes relevant concepts of deductive
mathematics and queuing theory. The framework also uses Markov transition
matrices and probabilistic recursive functions that significantly augment the
formal understanding about different design options adopted in BeeHive. The
authors have formally modeled the goodness of a neighbor that represents
the desirability for choosing it in order to reach a destination, end-to-end
packet delay, throughput and the probability of packets following loops with
the help of their model. The authors have empirically validated the results
obtained form their formal model with the ones obtained from OMNeT++
simulations on a small network topology. The estimated performance values
of their formal model closely follow patterns similar to the values obtained
through the network simulator. This work will be a cardinal step in removing
a serious shortcoming of SI-based algorithms: lack of formal understanding
about their merits and behavior.

6.3 The BeeAdHoc Algorithm for Wireless Mobile Ad Hoc
Networks

Wedde, Farooq, et al. (2004) [140, 144, 146, 147] designed BeeAdHoc with
the aim of defining a MANET routing algorithm which at the same time
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is energy-efficient and provides performance comparable to that of existing
state-of-the-art algorithms. Honey bee behavior served as the main inspira-
tion to design the different types of agents at work in the system and their
interaction. Adopting the bee metaphor, each node’s routing controller is seen
as an independent beehive where the bee agents live, act, and interact. BeeAd-
Hoc is a relatively simple algorithm residing at the network layer that makes
use of a reactive strategy for agent launching and of source routing to forward
packets. In the following we discuss in separate subsections the multi-agent
model, the beehive-like architecture of the routers, and the performance of
the algorithm.

Multi-agent Model

BeeAdHoc is based on the use of four different bee-inspired types of agents:
packers, scouts, foragers, and beeswarms.

Packers mimic the task of a food-storer bee. Packers reside inside a network
node, and receive and store data packets from the upper transport layer (see
Fig. 4). Their main task is to find a forager for the data packet at hand.
Once the forager is found and the packet is handed over, the packer agents
are removed from the system.

The task of scouts is to discover new routes from their launching node
to their destination node. A scout is broadcast to all neighbors within range
using an expanding time to live (TTL) timer heuristic analogous to that used
in the AODV algorithm [75]. At the start of the route search, a scout agent
is generated, its TTL is set to a small value (e.g., 3), and it is broadcast. If
after a certain amount of time the scout is not back with a route, the strategy
consists of the generation of a new scout and of the assignment of a TTL
higher than that in the previous attempt. In this way the search radius of
the generated scouts is incrementally enlarged, increasing the probability of
reaching the searched destination. When a scout reaches the destination, it
starts a backward journey on the same route that it has followed while moving
forward toward the destination. Once the scout is back to its source node, it
recruits foragers for its route by utilizing a mechanism derived from the waggle
dance of scout bees in nature. A dance is abstracted into the number of clones
that could be made of the same scout, which is encoded in their dance number
(corresponding to recruiting forager bees in nature).

Foragers are the main workers in the BeeAdHoc algorithm. They are bound
to the “bee hive” of a node. They receive data packets from packers and deliver
them to their destination in a source-routed modality. To “attract” data pack-
ets foragers use the same metaphor of a waggle dance as scouts do. Foragers
are of two types: delay and lifetime. From the nodes they visit, delay foragers
gather end-to-end delay information, while lifetime foragers gather informa-
tion about the remaining battery power. Delay foragers try to route packets
along a minimum-delay path, while lifetime foragers try to route packets so
that the lifetime of the network is maximized. A forager is transmitted from
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node to node using a unicast, point-to-point modality. Once a forager reaches
the searched destination and delivers the data packets, it waits there until it
can be piggybacked on a packet bounded for its original source node. In par-
ticular, since TCP acknowledges received packets, BeeAdHoc piggybacks the
returning foragers in the TCP acknowledgments. This reduces the overhead
generated by control packets, saving energy at the same time.

Beeswarms are the agents that are used to explicitly transport foragers
back to their source node when the applications are using an unreliable trans-
port protocol like UDP, such that no acknowledgments are sent for the received
data packets. To optimize forager transport, one beeswarm agent can carry
multiple foragers: one forager is put in the header of the beeswarm while the
others are put in the agent payload.

Beehive-like Architecture of the Node Controllers

In BeeAdHoc, each MANET node contains at the network layer a software
module called hive, which consists of three parts: the packing floor, the en-
trance floor, and the dance floor. The structure of the hive is shown in Fig. 4.

BeeHive

packing floor

entrance

dance floor

application layers (TCP, UDP, etc.)

network layers (MAC, i.e. IEEE 802.11)

Fig. 4. Overview of the BeeAdHoc’s hive architecture at a network node

The entrance floor is an interface to the lower MAC layer, while the packing
floor is an interface to the upper transport layer. The dance floor contains the
foragers and the routing information to route locally generated data packets.
The functional characteristics of each floor composing the hive are as follows:

Packing floor. The packing floor is an interface to the upper transport layer
(e.g., TCP or UDP). Once a data packet arrives from the transport layer,
a matching forager for it is looked up on the dance floor. If one forager is
found then the data packet is encapsulated in its payload. Otherwise, the
data packet is temporarily buffered to wait for a returning forager. If no
forager comes back within a certain predefined time, a scout is launched
which is responsible for discovering new routes to the packet’s destination.
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Entrance floor. Actions at the dance floor depend on the type of packet
that entered the floor from the MAC layer. If the packet is a forager and
the current node is its destination, then the forager is forwarded to the
packing floor; otherwise, it is directly routed to the MAC interface of
the next hop node. If the packet is a scout agent, it is broadcast to the
neighbor nodes if its TTL timer has not expired yet or if the current node
is not its destination. The information about the ID of the scout and its
source node is stored in a local list. If a replica of a previously received
scout arrives at the entrance floor, the replica is removed from the system.
If a forager with the same destination as the scout already exists in the
dance floor, then the forager’s route to the destination is given to the
scout by appending it to the route held so far by the scout.

Dance floor. The dance floor is the heart of the hive because it maintains the
routing information in the form of foragers. The dance floor is populated
with routing information by means of a mechanism reminiscent of the
waggle dance recruitment in natural bee hives: once a forager returns after
its journey it recruits new foragers by “dancing” according to the quality
of the path it traversed. A lifetime forager evaluates the quality of its route
based on the average remaining battery capacity of the nodes along its
route. Mimicking forager bees in nature that dance enthusiastically when
they find a food source worth exploiting, recruiting in this way a number of
foragers, a lifetime forager can be cloned many times in two distinct cases.
In the first case, the nodes on the discovered route have a good amount
of spare battery capacity, which means that this is a good route that can
be well exploited. In the second case, a large number of data packets are
waiting for the forager, so that the route needs to be exploited even though
it might be having nodes with little battery capacity. On the other hand, if
no data packets are waiting to be transported, then a forager with a very
good route might even abstain from dancing because the other foragers are
fully satisfying traffic requests. This concept is directly borrowed from the
behavior of scout and forager bees in nature, and it helps to automatically
regulate the number of foragers for each route.
The central activity of the dance floor module consists in sending a match-
ing forager to the packing floor in response to a request from a packer.
The foragers whose lifetimes have expired are not considered for match-
ing. If multiple foragers could be identified for matching then a forager
is selected in a random way. This helps in distributing the packets over
multiple paths, which in turn serves two purposes: avoiding congestion
under high loads and depleting batteries of different nodes at a compara-
ble rate. A clone of the selected forager is sent to the packing floor and
the original forager is stored on the dance floor after reducing its dance
number, that is, the number of permitted clones. If the dance number is
0, then the original forager is sent to the packing floor, removed in this
way from the dance floor. This strategy aims at favoring young over old
foragers, since they represent fresher routes, which are expected to remain
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valid in the near future with higher chances than the older ones due to
their greater mobility and lesser battery depletion. If the last forager for
a destination leaves a hive, then the hive does not have anymore a route
to the destination. Nevertheless, if a route to the destination still exists,
then soon a forager will be returning to the hive, while if no forager comes
back within a reasonable amount of time then the node has probably lost
its connection to the destination node. This mechanism eliminates the
need for explicitly monitoring the validity of the routes by using special
Hello packets and informing other nodes through route error messages, as
is done in several state-of-the-art algorithms such as AODV, as well as
in several ACO implementations for MANETs. In this way fewer control
packets are transmitted, resulting also in less energy expenditure.

Implementation and Performance Evaluation

BeeAdHoc has been implemented and evaluated both in simulation and in
real networks. Results from extensive simulation tests show that BeeAdHoc
delivers the same or better performance than that of the state-of-the-art algo-
rithms like AODV, DSR and DSDV [98], but with a significantly smaller
overall energy expenditure [140, 144, 146, 147]. To study its performance
in more realistic and way more challenging physical networks, the authors
have implemented BeeAdHoc inside the Linux network stack. They compared
BeeAdHoc with AODV and OLSR proposing a three-step testing methodol-
ogy with the intent of gradually moving toward a real MANET [140, 147].
First, in simulated reality, they tested the algorithms in a virtual network of
five virtual machines connected through a software switch. They randomly
changed the topology to simulate mobility. This scenario depicted an ideal
MANET. Second, in quasi reality, the communication between laptops was
established though 802.11 wireless network cards by placing laptops in the
communication range of each other and the mobility was simulated by dis-
carding packets through packet filtering at the link layer in case the laptop was
not supposed to receive the packets. Finally, in real MANET, the authors con-
ducted a MANET experiment on a 12-laptop network in which the nodes were
moving at a walking speed on the north campus of University of Dortmund,
Germany. Interestingly, performance values obtained in the simulated reality
scenario did not show a correlation with those of the real MANET. However,
the overall pattern of the values remained the same: BeeAdHoc was able to
consistently a performance to that of OLSR and AODV, with the properties
of using significantly fewer control packets and consuming less battery power.

Schletter, Fischer, et al. (2005) [147]: An Agent-Based Formal Investigation
of BeeAdHoc

The formal analysis of routing protocols for MANETs is a challenging area
of research. In [147] the authors have studied performance and behavior of
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BeeAdHoc by adopting a formal verification model, which is a rather innova-
tive approach in the domain of SI. They relied on the framework of Sumpter
[124] to propose an agent interaction model based on the use of the Weight
Synchronous Calculus of Communicating Systems (WSCCS). Using a prob-
abilistic workbench to validate the formal model, the authors have shown
that the formal model is able to predict the distribution of the foragers on
multiple paths as a function of their quality. Moreover, they were also able
to analyze the sending pattern of beeswarms and optimize it through the
model. This work can play a vital role in developing a comprehensive formal
model-checking framework for SI based routing algorithms in general.

6.4 Other Algorithms for MANETs Based on BeeAdHoc

Mazhar and Farooq (2007) [82, 83]: BeeSec, BeeAIS

The authors followed the same research methodology as was used in Bee-
HiveGuard and BeeHiveAIS to analyze the security threats of BeeAdHoc and
then proposed two solutions: BeeSec, which utilizes a digital signature based
security framework, and BeeAIS, which utilizes the principles of AIS to pro-
vide security. However, in MANETs, providing an AIS-based security is more
challenging because of the mobility of the nodes. As a result, it was diffi-
cult to identify whether the change in the path of an agent is due to the
malicious activity of a node or to its internal mobility. This translates into
the idea of a ”self” which is changing. According to the reported results: (i)
BeeAIS provides the same security level as compared to BeeSec but at sig-
nificantly less processing and communication costs, which means a significant
amount of energy and power saving compared to BeeSec; (ii) the performance
of BeeAIS, even with the overhead for providing security, is significantly bet-
ter than AODV and DSR and is approximately similar to that of the original
BeeAdHoc algorithm. These results seem to indicate the efficacy of adopting
an AIS component for SI-based security protocols in power-aware systems,
considering the low processing complexity and the absence of additional com-
munication costs.

7 Conclusions and Future Perspectives for SI Routing

In this chapter we addressed the problem of routing in current and next gen-
eration telecommunications networks, which are characterized by the fact of
their being very complex, dynamic, large, and heterogeneous. Swarm intelli-
gence design features a number of properties that are highly desirable with
the challenges posed by these networks. In the chapter we reviewed the major
routing protocols inspired by collective behaviors observed in social insects
such as ant and bee colonies. This specific class of SI algorithms includes the
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majority of the most significant and promising applications of the SI paradigm
to the solutions of adaptive network routing problems.

Social insects behaviors, mainly ant colonies, have fueled in the last ten
years the design and implementation of a consistent number of protocols and
algorithms for routing. We could not review here this whole body of work,
but we provided anyway a quite comprehensive overview of the main algo-
rithms, of their general design principles and general properties. More specif-
ically, we discussed the pheromone-driven shortest-path behavior of foraging
ant colonies, which has been reverse-engineered and put to work in the op-
timization framework of ant colony optimization, that, in turn, has guided
the design of a relatively large number of routing algorithms. Analogously,
we pointed out and abstracted those core mechanisms at work in foraging
bee colonies, such as waggle dancing, which have recently driven the design
of novel routing algorithms. We have considered different classes of networks
characterized by different communication and transmission technologies and
services, and for each class we have briefly discussed the characteristics of the
main ant- and bee-colony inspired algorithms which can be found in the liter-
ature. We have pointed out their pros and cons and their distinctive features
in relation to the classification features of routing algorithms given in Sect. 3.
Tables 1 and 2 summarize these core features for a few of the most prominent
among the reviewed algorithms, and compare them to established and clas-
sical state-of-the-art routing algorithms. From the tables it is apparent that,
in general, SI algorithms have and make use of certain features that classical
algorithms do not have and vice versa. On the other hand, since according
to extensive comparative studies the performance of the reviewed algorithms,
and in particular of those listed in the tables, seems to be significantly better
than that of classical state-of-the-art algorithms, one might argue that the
properties implied by the SI design are particularly suitable for facing the
challenges of modern networks.

Generally speaking, a fundamental aspect of the SI paradigm is the fact
that it emphasizes a particular bottom-up design approach which, for network
routing results in the definition of protocols featuring, among others: local-
ity of interactions and self-organizing behaviors, availability of multiple paths
for routing and failure backup, ability to adapt in a quick and robust way to
topological and traffic changes and component failures, scalable performance,
robustness to failures and losses internal to the protocol, easiness of design and
tuning. As is also confirmed by the data in the tables, most of the reviewed
algorithms possess significant subsets of these important properties which are
particularly appealing for current and future networking. In fact, with the
impressive growth of the Internet, and the pervasive deployment of wireless
and wired networking, these are the core properties which should characterize
all modern protocols of the network protocol stack in order for us to be able
to cope with the levels of complexity, heterogeneity, and dynamism of current
and forthcoming networks. The relatively novel fields of traffic engineering
and autonomic communications emphasize the need for both an efficient uti-
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Table 1. General features of routing algorithms for wired networks. The considered
features have been discussed in Sect. 3. The algorithms have been discussed in the
previous sections. “y” and “n” stand respectively for “yes” and “no”, while “p”
means that the algorithm partly possesses the feature

.

AntNet Adaptive-SDR BeeHive OSPF MDVA QColony QOSPF

Topology-adaptive p y y y y p y

Traffic-adaptive y y y n p y y

Router-Intelligent y y y y y y n

Multi-path y y y n y n n

Local representation y y y n n y n

Hierarchical n y y y n y y

Constructive n n y y n n y

Loop-free n n p y y n y

Proactive behavior y y y y y y y

Reactive behavior n n n n n y n

Stochastic exploration y y n n n p n

Stochastic data routing y y y n n n n

Formal properties n n y y y n p

Physical implementation y n y y n n y

Quality of service n n n n n y y

Table 2. General features of routing algorithms for MANETs. The considered fea-
tures have been discussed in Sect. 3. The algorithms are discussed in the previous
sections. “y” and “n” stand respectively for “yes” and “no”, while “p” means that
the algorithm partly possesses the feature.

AntHocNet ANSI Termite BeeAdHoc DSR AODV OLSR

Topology-adaptive y y y y y y y

Traffic-adaptive y y y y p p p

Router-Intelligent y y y n n y y

Multi-path y p y y n n n

Local representation y y y y y y n

Hierarchical n n n n n n n

Constructive y y y y y y n

Loop-free n n n y y n n

Proactive behavior y p y n n n y

Reactive behavior y y y y y y n

Stochastic exploration y n y n n n n

Stochastic data routing y n y y n n n

Formal properties n n p p p p p

Physical implementation p n n y y y y

Energy-aware n n n y n n n
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lization of network resources and the ability of the network to self-control and
adapt over time both as a whole and at the level of the single components.
“Classical” algorithms for network management and control have been de-
signed top-down, not taking into account the explosion in complexity in all
directions and dimensions faced by current networks. Again, this can be also
understood looking at the tables. It is clear that established classical algo-
rithms miss some core properties in terms of dynamic behavior, robustness,
and locality.

We believe that routing algorithms inspired by social insect behaviors,
and, more generally, by the SI paradigm, can play an important role in em-
powering future networks with an optimized, adaptive, robust, and scalable
control system at the network layer. The downside of these novel approaches
consists in the current lack of extensive implementation and testing on physi-
cal networks, and in the difficulty, somehow intrinsic to fully distributed and
stochastic bottom-up approaches, of providing formal guarantees in terms of
dependability. Solid work in these two aspects is still necessary to get a wider
acceptance from the networking community and a deeper and solid under-
standing of the behavior and properties of these algorithms. If this will be
done in the near future, we can expect a rapid deployment of SI algorithms
in the control systems of forthcoming networks.
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119. E. Sigel, B. Denby, and S. Le Heárat-Mascle. Application of ant colony opti-
mization to adaptive routing in a LEO telecommunications satellite network.
Annals of Telecommunications, 57(5–6):520–539, May-June 2002.

120. K. M. Sim and W. H. Sun. Ant colony optimization for routing and load-
balancing: Survey and new directions. IEEE Transactions on Systems, Man
and Cybernetics-Part A, 33(5):560–572, 2003.

121. K. M. Sim and W. H. Sun. Ant colony optimization for routing and load-
balancing: Survey and new directions. IEEE Transactions on Systems, Man,
and Cybernetics–Part A, 33(5):560–572, September 2003.
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Summary. The activities of social insects are often based on a self-organising pro-
cess, that is, “a process in which pattern at the global level of a system emerges
solely from numerous interactions among the lower-level components of the sys-
tem”(see [4], p. 8). In a self-organising system such as an ant colony, there is neither
a leader that drives the activities of the group, nor are the individual ants informed
about a global recipe or blueprint to be executed. On the contrary, each single
ant acts autonomously following simple rules and locally interacting with the other
ants. As a consequence of the numerous interactions among individuals, a coherent
behaviour can be observed at the colony level.

A similar organisational structure is definitely beneficial for a swarm of au-
tonomous robots. In fact, a coherent group behaviour can be obtained providing
each robot with simple individual rules. Moreover, the features that characterise
a self-organising system—such as decentralisation, flexibility and robustness—are
highly desirable also for a swarm of autonomous robots. The main problem that
has to be faced in the design of a self-organising robotic system is the definition of
the individual rules that lead to the desired collective behaviour. The solution we
propose to this design problem relies on artificial evolution as the main tool for the
synthesis of self-organising behaviours. In this chapter, we provide an overview of
successful applications of evolutionary techniques to the evolution of self-organising
behaviours for a group of simulated autonomous robots. The obtained results show
that the methodology is viable, and that it produces behaviours that are efficient,
scalable and robust enough to be tested in reality on a physical robotic platform.

1 Introduction

Swarm robotics studies a particular class of multi-robot systems, composed
of a large number of relatively simple robotic units, and it emphasises aspects
like decentralisation of control, robustness, flexibility and scalability.3 Swarm
3 For an introduction to swarm robotics, see Chapter 4 in this book.
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robotics is often inspired by the behaviour of social insects, such as ants, bees,
wasps and termites. The striking ability of these animals consists in performing
complex tasks such as nest building or brood sorting, despite the limited
cognitive abilities of each individual and the limited information that each
individual has about the environment. Many activities carried out by social
insects are the result of self-organising processes, in which the system-level
properties result solely from the interactions among the individual components
of the system [4]. In a complex system like an ant colony, there is neither a
leader that drives the activities of the group, nor are the individual ants
informed of a global recipe or blueprint to be executed. On the contrary, each
single ant acts autonomously following simple rules and locally interacting
with the other ants. As a consequence of the numerous interactions among
individuals, a coherent behaviour can be observed at the colony level.

A similar organisational structure is definitely beneficial for a swarm of au-
tonomous robots. By designing for self-organisation, only minimal complexity
is required for each individual robot and for its controller, and still the system
as a whole can solve a complex problem in a flexible and robust way. In fact,
the global behaviour results from the local interactions among the robots and
between robots and the environment, without being explicitly coded within
the rules that govern each individual. Rather, the global behaviour results
from the interplay of the individual behaviours. Not all swarm robotic sys-
tems present self-organising behaviours, and self-organisation is not required
for a robotic system to belong to swarm robotics. However, the importance
of self-organisation should not be neglected: a high complexity at the system
level can be obtained using simple rules at the individual level. It is there-
fore highly desirable to seek for self-organising behaviours in a swarm robotic
system, as they can be obtained with minimal cost. However, because the rela-
tionship between simple local rules and complex global properties is indirect,
the definition of the individual behaviour is particularly challenging.

[The] problem is to determine how these so-called “simple” robots
should be programmed to perform user-designed tasks. The pathways
to solutions are usually not predefined but emergent, and solving a
problem amounts to finding a trajectory for the system and its envi-
ronment so that the states of both the system and the environment
constitute the solution to the problem: although appealing, this for-
mulation does not lend itself to easy programming [15].

The solution we propose to this design problem relies on artificial evolution
as the main tool for the synthesis of self-organising behaviours. We discuss the
evolutionary approach to swarm robotics in more detail in Sect. 2. In Sect. 3,
we present three case studies in which self-organising behaviours have been
evolved: synchronisation, coordinated motion and hole avoidance. With the
obtained results, we show that the evolutionary methodology is viable and
that it produces behaviours that are efficient, scalable and robust enough to
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be tested in reality on a physical robotic platform. Finally, Sect. 4 concludes
the chapter.

2 Evolutionary Design of Self-organising Behaviours

As seen in the previous section, there is a fundamental problem—referred
to as the design problem—that arises in the development of self-organising
behaviours for a group of robots. As discussed in Sect. 2.1, this problem con-
sists in defining the appropriate individual rules that will lead to a certain
global pattern. In Sect. 2.2, we will discuss how collective behaviours can
be obtained resorting to evolutionary robotics, an automatic technique for
generating solutions for a particular robotic task, based on artificial evolu-
tion [7, 8]. Notwithstanding the many successful applications in the single
robot domain [12, 20, 11], evolutionary robotics has been used only recently
for the development of group behaviours. In Sect. 2.3, we review some of the
most interesting achievements found in the literature about collective evolu-
tionary robotics.

2.1 The Design Problem

The design of a control system that lets a swarm of robots self-organise re-
quires the definition of those rules at the individual level that correspond to
a desired pattern at the system level. This problem is not trivial. From an
engineering perspective, it is necessary to discover the relevant interactions
between the individual robots, which lead to the global organisation. In other
words, the challenge is given by the necessity to decompose the desired global
behaviour into simpler individual behaviours and into interactions among the
system components. Furthermore, having identified the mechanisms that lead
to the global organisation, we still have to consider the problem of encoding
them into the controller of each robot, which is complicated by the non-linear,
indirect relation between individual control rules and global behaviour: in fact,
even a small variation in the individual behaviour might have large effects on
the system-level properties. This two-step decomposition process—referred to
as the divide and conquer approach to the design problem—is exemplified in
Fig. 1. The self-organised system displays a global behaviour interacting with
the environment (Fig. 1, left). In order to define the controller for the robots,
two phases are necessary: first, the global behaviour is decomposed into in-
dividual behaviours and local interactions among robots and between robots
and the environment (centre); then, the individual behaviour must be decom-
posed into fine-grained interactions between the robot and the environment,
and these interactions must be encoded into a control program (right). Both
these phases are complex because they attempt to decompose a process (the
global behaviour or the individual one) that results from a dynamical inter-
action among its subcomponents (interactions among individuals or between
the robots and the environment).
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environment
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control
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Fig. 1. The “divide and conquer” approach to the design problem. In order to have
the swarm robotic system self-organise, we should first decompose the global be-
haviour of the system (left) into individual behaviours and local interactions among
robots and between robots and environment (centre). Then, the individual behaviour
must be in some way encoded into a control program (right)

The decomposition from the global to the individual behaviours could be
simplified by taking inspiration from natural systems, such as insect societies,
that could reveal the basic mechanisms which are to be exploited [3]. Following
the observation of a natural phenomenon, a modelling phase is performed,
which is of fundamental importance to “uncover what actually happens in the
natural system” ([3], p. 8). The developed model can then be used as a source
of inspiration for the designer, who can try to replicate certain discovered
mechanisms in the artificial system, in order to obtain dynamics similar to
the natural counterpart (see Fig. 2). However, it is not always possible to take
inspiration from natural processes because they may differ from the artificial
systems in many important aspects (e.g., the physical embodiment, the type
of possible interactions between individuals and so forth), or because there are
no natural systems that can be compared to the artificial one. Moreover, the
problem of encoding the individual behaviours into a controller for the robots
remains to be solved. Our working hypothesis is that both the decomposition
problems discussed above can be efficiently bypassed relying on evolutionary
robotics techniques [20], as discussed in the following section.

environment

control
program

environment dx/dt = y+q(x)
dy/dt = yx+p(y)

observations
and modeling

design?
self−organizing
natural system

Fig. 2. The design problem solved by taking inspiration from nature: an existing self-
organising system (left) can be observed and its global behaviour modelled (centre),
obtaining useful insights on the mechanisms underlying the self-organisation process.
The model can be used as a source of inspiration for the following design phase, which
leads to the definition of the control program (right)



Evolution, Self-organization and Swarm Robotics 167

2.2 Evolution of Self-organising Behaviours

Evolutionary robotics represents an alternative approach to the solution of
the design problem. By evaluating the robotic system as a whole (i.e., by
testing the global self-organising behaviour starting from the definition of
the individual rules), it eliminates the arbitrary decompositions at both the
level of finding the mechanisms of the self-organising process and the level of
implementing those mechanisms into the rules that regulate the interaction
between robot and the environment. This approach is exemplified in Fig. 3:
the controller encoded into each genotype is directly evaluated by looking
at the resulting global behaviour. The evolutionary process autonomously
selects the “good” behaviours and discards the “bad” ones, based on a user-
defined evaluation function. Moreover, the controllers are directly tested in
the environment; thus they can exploit the richness of solutions offered by the
dynamic interactions among robots and between robots and the environment,
which are normally difficult to be exploited by hand design.

The advantages offered by the evolutionary approach are not costless [16].
On the one hand, it is necessary to identify initial conditions that assure
evolvability, i.e., the possibility to progressively synthesise better solutions
starting from scratch. On the other hand, artificial evolution may require long
computation time, so that an implementation on the physical robotic platform
may be too demanding. For this reason, software simulations are often used.
The simulations must retain as much as possible the important features of the
robot-environment interaction. Therefore, an accurate modelling is needed to
deploy simulators that well represent the physical system [14].

2.3 Collective Evolutionary Robotics in the Literature

As mentioned above, the use of artificial evolution for the development of
group behaviours received attention only recently. The first examples of evo-
lutionary techniques applied to collective behaviours considered populations
of elementary organisms, evolved to survive and reproduce in a simulated sce-
nario [31, 32]. Using a similar approach, flocking and schooling behaviours

environmentcontroller

self−organizing
system

Fig. 3. The evolutionary approach to the design problem: controllers (left) are
evaluated for their capability to produce the desired group behaviour (right). The
evolutionary process is responsible for the selection of the controllers and for evalu-
ating their performance (fitness) within the environment in which they should work
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were evolved for groups of artificial creatures [24, 30, 25]. Collective transport
has also been studied using evolutionary approaches [9, 10].

The credit assignment problem in a collective scenario was studied by
comparing homogeneous versus heterogeneous groups—composed of two sim-
ulated robots—evolved to display a coordinated motion behaviour [22]. Re-
sults indicate that heterogeneous groups are better performing for this rather
simple task. However, the heterogeneous approach may not be suitable when
coping with larger groups and/or with behaviours that do not allow for a clear
role allocation [21]. In this case, homogeneous groups achieve a better perfor-
mance, as they display altruistic behaviours that appear with low probability
when the group is heterogeneous and selection operates at the individual level.
Overall, the above-mentioned works confirm that artificial evolution can be
successfully used to synthesise controllers for collective behaviours. However,
whether these results can generalise to physical systems—i.e., real robots—
remains to be ascertained. The three case studies presented in the following
section are some examples—among few others, see [23, 19]—of evolutionary
robotics techniques applied to group behaviours and successfully tested on
physical robots.

3 Studies in Evolutionary Swarm Robotics

In this section, we present three case studies in which artificial evolution has
been exploited to evolve collective self-organising behaviours. In Sect. 3.2, we
consider the problem of synchronising the movements of a group of robots
by exploiting a minimal communication channel. In Sect. 3.3, we present the
problem of obtaining coordinated motion in a group of physically assembled
robots. The obtained behaviour is extended in Sect. 3.4, in which the prob-
lem of avoiding holes is considered together with coordinated motion. Before
reviewing these case studies, we present in Sect. 3.1 the robotic system used
in our experiments.

3.1 A Swarm Robotics Artifact: The Swarm-bot

The experiments presented in this chapter have been mainly conducted within
the SWARM-BOTS project,4 which aimed at the design and implementation
of an innovative swarm robotics artifact—the swarm-bot—which is composed
of a number of independent robotic units—the s-bots—that are connected
together to form a physical structure [18]. When assembled in a swarm-bot,
the s-bots can be considered as a single robotic system that can move and
reconfigure. Physical connections between s-bots are essential for solving many
collective tasks, such as retrieving a heavy object or bridging a gap larger
than a single s-bot. However, for tasks such as searching for a goal location

4 For more details, see http://www.swarm-bots.org.
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Fig. 4. View of the s-bot from different sides. The main components are indicated
(see text for more details)

or tracing an optimal path to a goal, a swarm of unconnected s-bots can be
more efficient.

An s-bot is a small mobile autonomous robot with self-assembling capa-
bilities, shown in Fig. 4. It weighs 700 g and its main body has a diameter
of about 12 cm. Its design is innovative with regard to both sensors and ac-
tuators. The traction system is composed of both tracks and wheels, called
treels. The treels are connected to the chassis, which also supports the main
body. The latter is a cylindrical turret mounted on the chassis by means of a
motorised joint, that allows the relative rotation of the two parts. A gripper
is mounted on the turret and it can be used for connecting rigidly to other
s-bots or to some objects. The gripper does not only open and close, but it
also has a degree of freedom for lifting the grasped objects. The corresponding
motor is powerful enough to lift another s-bot. S-bots are also provided with
a flexible arm with three degrees of freedom, on which a second gripper is
mounted. However, this actuator has not been considered for the experiments
presented in this chapter, nor was it mounted on the s-bots that have been
used.
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An s-bot is provided with many sensory systems, useful for the percep-
tion of the surrounding environment or for proprioception. Infrared proximity
sensors are distributed around the rotating turret. Four proximity sensors
placed under the chassis—referred to as ground sensors—can be used for per-
ceiving holes or the terrain’s roughness (see Fig. 4). Additionally, an s-bot is
provided with eight light sensors uniformly distributed around the turret, two
temperature/humidity sensors, a three-axis accelerometer and incremental en-
coders on each degree of freedom. Each robot is also equipped with sensors
and devices to detect and communicate with other s-bots, such as an omni-
directional camera, coloured LEDs around the s-bots’ turret, microphones and
loudspeakers (see Fig. 4). In addition to a large number of sensors for per-
ceiving the environment, several sensors provide information about physical
contacts, efforts, and reactions at the interconnection joints with other s-bots.
These include torque sensors on most joints as well as a traction sensor, a
sensor that detects the direction and the intensity of the pulling and pushing
forces that s-bots exert on each others.

3.2 Synchronisation

In this section, we provide the first case study in which self-organising be-
haviours are evolved for a swarm of robots. The task chosen is synchronisa-
tion: robots should exploit communication in order to entrain their individual
movements. Synchronisation is a common phenomenon in nature: examples of
synchronous behaviours can be found in the inanimate world as well as among
living organisms. One of the most commonly cited self-organised synchronous
behaviours is the one of fireflies from Southeast Asia: thousands of insects have
the ability to flash in unison, perfectly synchronising their individual rhythm
(see [4]). This phenomenon has been thoroughly studied and an explanation
based on self-organisation has been proposed [17]. Fireflies are modelled as a
population of pulse-coupled oscillators with equal or very similar frequency.
These oscillators can influence each other by emitting a pulse that shifts or
resets the oscillation phase. The numerous interactions among the individual
oscillator fireflies are sufficient to explain the synchronisation of the whole
population (for more details, see [17, 26]).

The above self-organising synchronisation mechanism was successfully
replicated in a group of robots [33]. In this study, the authors designed a
specialised neural module for the synchronisation of the group foraging and
homing activities, in order to maximise the overall performance. Much like
fireflies that emit light pulses, robots communicate through sound pulses that
directly reset the internal oscillator designed to control the individual switch
from homing to foraging and vice versa. Similarly, the case study presented
in this section follows the basic idea that if an individual displays a peri-
odic behaviour, it can synchronise with other (nearly) identical individuals by
temporarily modifying its behaviour in order to reduce the phase difference
with the rest of the group. However, while a firefly-like mechanism exploits
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the entrainment of the individual oscillators, in this work we do not postulate
the need of internal dynamics. Rather, the period and the phase of the indi-
vidual behaviour are defined by the sensory-motor coordination of the robot,
that is, by the dynamical interactions with the environment that result from
the robot embodiment. We show that such dynamical interactions can be ex-
ploited for synchronisation, allowing us to keep a minimal complexity of both
the behavioural and the communication level (for more details, see [28]).

Experimental Setup

As mentioned above, in this work we aim at studying the evolution of be-
havioural and communication strategies for synchronisation. For this purpose,
we define a simple, idealised scenario that contains all the ingredients needed
for our study. The task requires that each s-bot in the group displays a simple
periodic behaviour, that is, moving back and forth from a light bulb posi-
tioned in the centre of the arena. Moreover, s-bots have to synchronise their
movements, so that their oscillations are in phase with each other.

The evolutionary experiments are performed in simulation, using a simple
kinematic model of the s-bots. Each s-bot is provided with infrared sensors
and ambient light sensors, which are simulated using a sampling technique. In
order to communicate with each other, s-bots are provided with a very simple
signalling system, which can produce a continuous tone with fixed frequency
and intensity. When a tone is emitted, it is perceived by every robot in the
arena, including the signalling s-bot. The tone is perceived in a binary way,
that is, either there is someone signalling in the arena, or there is no one. The
arena is a square of 6 × 6 meters. In the centre, a cylindrical object supports
the light bulb, which is always switched on, so that it can be perceived from
every position in the arena. At the beginning of every trial, three s-bots are
initially positioned in a circular band ranging from 0.2 to 2.2 meters from the
centre of the arena. The robots have to move back and forth from the light,
making oscillations with an optimal amplitude of 2 meters.

Artificial evolution is used to synthesise the connection weights of a fully
connected, feed-forward neural network—a perceptron network. Four sensory
neurons are dedicated to the readings of four ambient light sensors, positioned
in the front and in the back of the s-bot. Six sensory neurons receive input
from a subset of the infrared proximity sensors evenly distributed around the
s-bot ’s turret. The last sensory neuron receives a binary input corresponding
to the perception of sound signals. The sensory neurons are directly connected
to three motor neurons: two neurons control the wheels, and the third controls
the speaker in such a way that a sound signal is emitted whenever its activation
is greater than 0.5.

The evolutionary algorithm is based on a population of 100 binary-encoded
genotypes, which are randomly generated. Each genotype in the population
encodes the connection weights of one neural controller. Each real-valued con-
nection weight is encoded by eight bits in the genotype. The population is
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evolved for a fixed number of generations, applying a combination of selection
with elitism and mutation. Recombination is not used. At each generation,
the 20 best individuals are selected for reproduction and retained in the sub-
sequent generation. Each genotype reproduces four times, applying mutation
with 5% probability of flipping a bit. The evolutionary process is run for 500
generations. During evolution, a genotype is mapped into a control structure
that is cloned and downloaded in all the s-bots taking part in the experi-
ment (i.e., we make use of a homogeneous group of s-bots). Each genotype
is evaluated five times—i.e., five trials. Each trial differs from the others in
the initialisation of the random number generator, which influences both the
initial position and the orientation of the s-bots within the arena. Each trial
lasts T = 900 simulation cycles, which corresponds to 90 seconds of real time.

The fitness of a genotype is the average performance computed over the
five trials in which the corresponding neural controller is tested. During a sin-
gle trial, the behaviour produced by the evolved controller is evaluated by a
two-component fitness function. The first component rewards the periodic os-
cillations performed by the s-bots. The second component rewards synchrony
among the robots, evaluated as the cross-correlation coefficient between the
sequences of the distances from the light bulb. Additionally, an indirect selec-
tive pressure for the evolution of obstacle avoidance is given by blocking the
motion of robots that collide. When this happens, the performance is nega-
tively influenced. Furthermore, a trial is normally terminated after T = 900
simulation cycles. However, a trial is also terminated if any of the s-bots crosses
the borders of the arena.

Results

We performed 20 evolutionary runs, each starting with a different population
of randomly generated genotypes. After the evolutionary phase, we selected
a single genotype per evolutionary run, chosen as the best individual of the
final generation. We refer to the corresponding controllers as ci, i = 1, . . . , 20.
Direct observation of the evolved behaviours showed that in some evolution-
ary runs—nine out of 20—communication was not evolved, and robots display
a periodic behaviour without being able to synchronise. The remaining evo-
lutionary runs produced simple behavioural and communication strategies in
which signalling was exploited for synchronisation. All evolved solutions result
in a similar behaviour, characterised by two stages, that is, phototaxis when
the s-bots approach the light bulb, and antiphototaxis when the s-bots move
away from it. Signalling is generally performed only during one of the two
stages. We can classify the evolved controllers into three classes, according to
the individual reaction to the perception of a sound signal.

The first two classes present a very similar behaviour, in which signalling
strongly correlates with either phototaxis (controllers c5, c9, c13, c15 and c16)
or antiphototaxis (controllers c1, c4, c7, c19 and c20). We describe here the
behaviour using c13, which can be appreciated by looking at the left part of
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Fig. 5. The synchronisation behaviour of two controllers: c13 (left) and c14 (right).
In the upper part, the s-bots’ distances from the light bulb are plotted against
the simulation cycles, in order to appreciate the synchronisation of the individual
movements. The grey areas indicate when a signal is emitted by any of the s-bots
in the arena. In the lower part, the distance and signalling behaviour of a single
s-bot are plotted against the simulation cycles. From cycle 500 to 1000, a signal
is artificially created, which simulates the behaviour of an s-bot. This allows us to
visualise the reaction of an s-bot to the perception of a sound signal

Fig. 5. Looking at the upper part of the figure, it is possible to notice that
whenever a robot signals, its distance from the light decreases and, vice versa,
when no signal is perceived the distance increases. Synchronisation is normally
achieved after one oscillation and it is maintained for the rest of the trial, the
robots moving in perfect synchrony with each other. This is possible thanks
to the evolved behavioural and communication strategy, for which a robot
emits a signal while performing phototaxis and reacts to the perceived signal
by reaching and keeping a specific distance close to the centre of the arena.
As shown in the bottom part of Fig. 5, in presence of a continuous signal—
artificially created from cycle 500 to cycle 1000—an s-bot suspends its normal
oscillatory movement to maintain a constant distance from the centre. As
soon as the sound signal is stopped, the oscillatory movement starts again.
Synchronisation is possible because robots are homogeneous; therefore they
all present an identical response to the sound signal that makes them move
to the inner part of the arena. As soon as all robots reach the same distance
from the centre, signalling ceases and synchronous oscillations can start. In
conclusion, the evolved behavioural and communication strategies allow a
fast synchronisation of the robots’ activities, because they force all robots to
perform synchronously phototaxis or antiphototaxis from the beginning of a
trial, as a reaction to the presence or absence of a sound signal respectively.
This also allows a fast synchronisation of the movements thanks to the reset
of the oscillation phase. Finally, it provides a means to fine-tune and maintain
through time a complete synchronisation, because the reset mechanism allows
it to continuously correct even the slightest phase difference.
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The third class is composed by a single controller—c14—that produces
a peculiar behaviour. In this case, it is rather the absence of a signal that
strongly correlates with phototaxis. The individual reaction to the perceived
signal can be appreciated by looking at the right part of Fig. 5. When the
continuous signal is artificially created (see simulation cycles 500 to 1000 in
the lower part of the figure), the s-bot performs both phototaxis and antipho-
totaxis. However, as soon as the signal is removed, the s-bot approaches the
light bulb. Differently from the mechanism presented above, s-bots initially
synchronise only the movement direction but not the distance at which the
oscillatory movements are performed (see the top-right part of Fig. 5). Despite
this limitation, this mechanism allows a very fast and precise synchronisation
of the s-bots’ phototaxis and antiphototaxis, which is probably the reason why
it was evolved in the first place. In order to achieve a complete synchronisa-
tion, an additional mechanism was synthesised, which allows us to precisely
entrain the movements of the robots on a fine-grained scale. This mechanism
influences the distance covered by an s-bot during antiphototaxis: s-bots that
are farther away from the light bulb slightly bend their trajectory and there-
fore cover a distance range shorter than the one covered by the other robots
in the same time. In this way, the differences among s-bots are progressively
reduced, until all s-bots are completely synchronised.

Scalability of the Evolved Behaviours

The above analysis clarified the role of communication in determining the syn-
chronisation among the different robots. Here, we analyse the scalability of
the evolved neural controllers when tested in larger groups of robots. For this
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Fig. 6. Scalability of the successful controllers. Each controller was evaluated using
3, 6, 9 and 12 robots. In each condition, 500 different trials were executed. Each
box represents the inter-quartile range of the corresponding data, while the black
horizontal line inside the box marks the median value. The whiskers extend to the
most extreme data points within 1.5 times the inter-quartile range from the box.
The empty circles mark the outliers. The horizontal grey line shows the mean value
over 500 trials measured in the evolutionary conditions, in order to better evaluate
the scalability property
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Fig. 7. Scalability of the synchronisation mechanism. Each controller was evaluated
using 12, 24, 48 and 96 robots. In each condition, 500 different trials were executed

purpose, we evaluated the behaviour of the successful controllers using 3, 6, 9
and 12 s-bots. The obtained results are plotted in Fig. 6. It is easy to notice
that most of the best evolved controllers have a good performance for groups
composed of six s-bots. In such condition, in fact, s-bots are able to distribute
in the arena without interfering with each other. Many controllers present
a good behaviour also when groups are composed of nine s-bots. However,
we also observe various failures due to interferences among robots and colli-
sions. The situation gets worse when using 12 s-bots: the higher the density
of robots, the higher the number of interferences that lead to failure. In this
case, most controllers achieve a good performance only sporadically. Only c4

and c7 systematically achieve synchronisation despite the increased difficulty
of the task.

In order to analyse the scalability property of the synchronisation mecha-
nism only, we evaluate the evolved controllers by removing the physical inter-
actions among the robots, as if each s-bot were placed in a different arena and
perceived the other s-bots only through sound signals. Removing the robot-
robot interactions allows us to test large groups of robots—we used 12, 24, 48
and 96 s-bots. The obtained results are summarised in Fig. 7. We observe that
many controllers perfectly scale, having a performance very close to the mean
performance measured with three s-bots. A slight decrease in performance is
justified by the longer time required by larger groups to converge to perfectly
synchronised movements (see for example c7 and c20).

Some controllers—namely c4, c5, c9, c14 and c16—present an interference
problem that prevents the group from synchronising when a sufficiently large
number of robots is used. In such a condition, the signals emitted by differ-
ent s-bots at different times may overlap and may be perceived as a single,
continuous tone (recall that the sound signals are perceived in a binary way,
preventing an s-bot from recognising different signal sources). If the perceived
signal does not vary in time, it does not bring enough information to be
exploited for synchronisation. Such interference can be observed only sporad-
ically for c4 and and c14, but it strongly affects the performance of the other
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Fig. 8. Distances from the light bulb and collective signalling behaviour of the real
s-bots

controllers—namely c5, c9 and c16. This problem is the result of the fact that
we used a “global” communication form in which the signal emitted by an
s-bot is perceived by any other s-bot anywhere in the arena. Moreover, from
the perception point of view, there is no difference between a single s-bot and
a thousand signalling at the same time. The lack of locality and of additivity
is the main cause of failure for the scalability of the evolved synchronisa-
tion mechanism. However, as we have seen, this problem affects only some of
the analysed controllers. In the remaining ones, the evolved communication
strategies present an optimal scalability that is only weakly influenced by the
group size.

Tests with Physical Robots

We tested the robustness of the evolved controllers downloaded onto the phys-
ical robots. To do so, we chose c13 as it presented a high performance and good
scalability properties. The neural network controller is used on the physical
s-bots exactly in the same way as in simulation. The only differences with
the simulation experiments are in the experimental arena, which is four times
smaller in reality (1.5 × 1.5 meters), and accordingly the light bulb is ap-
proximately four times less intense. In these experiments, three s-bots have
been used. A camera was mounted on the ceiling to record the movements
of the robots and track their trajectories [5]. The behaviour of the physical
robots presents a good correspondence with the results obtained in simula-
tion. Synchrony is quickly achieved and maintained throughout the whole
trial, notwithstanding the high noise of sensors and actuators and the dif-
ferences among the three robots (see Fig. 8). The latter deeply influence the
group behaviour: s-bot have different maximum speeds which let them cover
different distances in the same time interval. Therefore, if phototaxis and an-
tiphototaxis were very well synchronised, as a result of the communication
strategy exploited by the robots, it was possible to notice some differences in
the maximum distance reached.

3.3 Coordinated Motion

The second case study focuses on a particular behaviour, namely coordinated
motion. In animal societies, this behaviour is commonly observed: we can think
of flocks of birds coordinately flying, or of schools of fish swimming in perfect
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unison. Such behaviours are the result of a self-organising process, and various
models have been proposed to account for them (see [4], chapter 11). In the
swarm-bot case, coordinated motion takes on a particular flavour, due to the
physical connections among the s-bots, which open the way to study novel
interaction modalities that can be exploited for coordination. Coordinated
motion is a basic ability for the s-bots physically connected in a swarm-bot
because, being independent in their control, they must coordinate their actions
in order to choose a common direction of movement. This coordination ability
is essential for an efficient motion of the swarm-bot as a whole, and constitutes
a basic building block for the design of more complex behavioural strategies,
as we will see in Sect. 3.4. We review here a work that extends previous
research conducted in simulation only [1]. We present the results obtained in
simulation, and we show that the evolved controllers continue to exhibit a
high performance when tested with physical s-bots (for more details, see [2]).

Experimental Setup

A swarm-bot can efficiently move only if the chassis of the assembled s-bots
have the same orientation. As a consequence, the s-bots should be capable of
negotiating a common direction of movement and then compensating possible
misalignments that occur during motion. The coordinated motion experiments
consider a group of s-bots that remain always connected in swarm-bot forma-
tion (see Fig. 9). At the beginning of a trial, the s-bots start with their chassis
oriented in a random direction. Their goal is to choose a common direction of
motion on the basis of only the information provided by their traction sensor,
and then to move as far as possible from the starting position. The common
direction of motion of the group should result from a self-organising process
based on local interactions, which are shaped as traction forces. We exploit
artificial evolution to synthesise a simple feed-forward neural network that
encodes the motor commands in response to the traction force perceived by
the robots.

Four sensory neurons encode the intensity of traction along four direc-
tions, corresponding to the directions of the semi-axes of the chassis’ frame

Fig. 9. Left: four real s-bots forming a linear swarm-bot. Right: four simulated s-bots
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of reference (i.e., front, back, left and right). The activation state of the two
motor neurons controls the wheels and the turret-chassis motor, which is ac-
tively controlled in order to help the rotation of the chassis. The evolutionary
algorithm used in this case differs from that described in Sect. 3.2 only in the
mutation of the genotype, which is performed with 3% probability of flipping
each bit. For each genotype, four identical copies of the resulting neural net-
work controllers are used, one for each s-bot. The s-bots are connected in a
linear formation, shown in Fig. 9. The fitness of the genotype is computed
as the average performance of the swarm-bot over five different trials. Each
trial lasts T = 150 cycles, which corresponds to 15 seconds of real time. At
the beginning of each trial, a random orientation of the chassis is assigned
to each s-bot. The ability of a swarm-bot to display coordinated motion is
evaluated by computing the average distance covered by the group during the
trials. Notice that this way of computing the fitness of the groups is sufficient
to obtain coordinated motion behaviour. In fact, it rewards swarm-bots that
maximise the distance covered and, therefore, their motion speed.

Results

Using the setup described above, 30 evolutionary runs have been performed
in simulation. All the evolutionary runs successfully synthesised controllers
that produced coordinated motion in a swarm-bot. The controllers evolved in
simulation allow the s-bots to coordinate by negotiating a common direction
of movement and to keep moving along in such a direction by compensat-
ing any possible misalignment. Direct observation of the evolved behavioural
strategies shows that at the beginning of each trial the s-bots try to pull or
push the rest of the group in the direction of motion in which they are initially
placed. This disordered motion results in traction forces that are exploited for
coordination: the s-bots orient their chassis in the direction of the perceived
traction, which roughly corresponds to the average direction of motion of the
group. This allows the s-bots to rapidly converge toward a common direction
and to maintain it.

Behavioural Analysis

All the 30 controllers evolved in the different replications of the evolutionary
process present similar dynamics. Hereafter, the controller synthesised by the
30th evolutionary run is considered, as it proved to have the best performance.
In order to understand the functioning of the controller at the individual
level, the activation of the motor units was measured in correspondence to
a traction force whose angle and intensity were systematically varied. In this
way, we can appreciate the behavioural strategy of each individual. When the
intensity of traction is low, the s-bot moves forward at maximum speed (see
the regions indicated by number 1 in Fig. 10). In fact, a low or null intensity of
traction—i.e., no pulling or pushing forces—corresponds to the robots already
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Fig. 10. Motor commands issued by the left and right motor units (left and right
figure, respectively) of the best evolved neural controller in correspondence to trac-
tion forces having different directions and intensities. An activation of 0 corresponds
to maximum backward speed and 1 to maximum forward speed. See text for the
explanation of numbers in round brackets

moving in the same direction. Whenever a traction force is perceived from
a direction different from the chassis’ direction, the s-bot reacts by turning
toward the direction of the traction force (see the regions indicated by number
2 in Fig. 10). For example, when the traction direction is about 90◦—i.e., a
pulling force from the left-hand side of the chassis’ movement direction—the
left wheel moves backward and the right wheel moves forward, resulting in
a rotation of the chassis in the direction of the traction force. Finally, the
s-bot keeps on moving forward if a traction force is perceived with a direction
opposite to the direction of motion (see the regions indicated by number 3
in Fig. 10). Notice that this is an instable equilibrium point, because as soon
as the angle of traction differs from 0◦, for example due to noise, the s-bot
rotates its chassis following the rules described above.

The effects of the individual behaviour at the group level can be described
as follows. At the beginning of each test, all s-bots perceive traction forces
with low intensity, and they start moving forward in the random direction
in which they were initialised. However, being assembled together, they gen-
erate traction forces that propagate throughout the physical structure. Each
s-bot perceives a single traction force, that is, the resultant of all the forces
applied to its turret, which roughly indicates the average direction of motion
of the group. Following the simple rules described above, an s-bot rotates its
chassis in order to align to the perceived traction force. In doing so, some
s-bots will be faster than the others, therefore reinforcing the traction signal
in their direction of motion. As a consequence, the other s-bots perceive an
even stronger traction force, which speeds up the alignment process. Overall,
this positive feedback mechanism makes all s-bots quickly converge toward
the same direction of motion.
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Fig. 11. Performance of the best evolved controller in simulation and reality (dis-
tance covered in 20 trials, each lasting 25 s). Labels indicate the experimental setup:
‘S’ and ‘H’ indicate tests performed respectively with simulated and physical s-bots;
‘L4’ indicates tests involving four s-bots forming a linear structure; ‘L4B’ and ‘L4W’
indicate tests performed on rough terrain, respectively brown and white terrain (see
text for details). ‘F4’ indicates tests involving four s-bots forming a linear structure
not rigidly connected. ‘L6’ indicates tests involving six s-bots forming a linear struc-
ture. ‘S4’ indicates tests involving four s-bots forming a square shape; ‘S8’ indicates
tests involving eight s-bots forming a “star” shape

Scalability and Generalisation with Simulated and Physical Robots

The self-organising behaviour described above is very effective and scalable,
leading to coordinated motion of swarm-bots of different sizes and shapes,
despite its being evolved using a specific configuration for the swarm-bot (i.e.,
four s-bots in linear formation). Tests with real robots showed a good perfor-
mance as well, confirming the robustness of the evolved controller. In Fig. 11,
we compare the performance of the evolved controller in different tests with
both simulated and real robots. In all tests performed, s-bots start connected
to each other, having randomly assigned orientations of their chassis. Each
experimental condition is tested for 20 trials, each lasting 25 seconds (250 cy-
cles). In the following, we briefly present the tests performed and we discuss
the obtained results.

The reference test involves four simulated s-bots forming a linear struc-
ture. The swarm-bot covers on average about 160 cm in 25 seconds. The
performance decreases of 23%, on average, when tested with the real s-bots
(see Fig. 11, conditions S-L4 and H-L4 ). The lower performance of the real
swarm-bot with respect to the simulated swarm-bot is due to the longer time
required by real s-bots to coordinate. This is caused by many factors, among
which is the fact that tracks and toothed wheels of the real s-bots sometimes
get stuck during the initial coordination phase, due to a slight bending of the
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structure that caused an excessive thrust on the treels. This leads to a sub-
optimal motion of the s-bots, for example while turning on the spot. However,
coordination is always achieved and the s-bots always move away from the ini-
tial position. This result proves that the controller evolved in simulation can
effectively produce coordinated motion when tested in real s-bots, notwith-
standing the fact that the whole process takes some more time compared
with simulation.

The evolved controller is also able to produce coordinated movements on
two types of rough terrain (see Fig. 11, conditions H-L4B and H-L4W ). The
brown rough terrain is a very regular surface made of brown plastic isolation
foils. The white rough terrain is an irregular surface made of plaster bricks
that look like stones. In these experimental conditions, the swarm-bot is always
able to coordinate and to move from the initial position, having a performance
comparable to what was achieved on flat terrain. However, in some trials
coordination is achieved only partially, mainly due to a more difficult grip of
the treels on the rough terrain.

Another test involves a swarm-bot in which connections among s-bots are
“semi-rigid” rather than completely rigid (see Fig. 11, conditions S-F4 and
H-F4 ). In the case of semi-rigid links the gripper is not completely closed and
the assembled s-bots are partially free to move with respect to each other.
In fact, a partially open gripper can slide around the turret perimeter, while
other movements are constrained. One interesting aspect of semi-rigid links is
that they potentially allow swarm-bots to dynamically rearrange their shape
in order to better adapt to the environment [1, 29]. Despite the different con-
nection mechanism, which deeply influences the traction forces transmitted
through the physical links, the obtained results show that the evolved con-
troller preserves its capability of producing coordinated movements both in
simulation and in reality. The performance using semi-rigid links is only 4%
and 11% lower than using rigid links, respectively in tests with simulated and
real swarm-bots.

The best evolved controller was tested with linear swarm-bots composed
of six s-bots. The results showed that larger swarm-bots preserve their ability
to produce coordinated movements both in simulation and in reality (see
Fig. 11, conditions S-L6 and H-L6 ). The performance in the new experimental
condition is 10% and 8% lower than what was measured with swarm-bots
formed by four s-bots, respectively in tests in simulation and in reality. This
test suggests that the evolved controller produces a behaviour that scales well
with the number of individuals forming the group both in simulated and real
robots (for more results on scalability with simulated robots, see [1, 6]).

Finally, we tested swarm-bots varying both shape and size. We tested
swarm-bots composed of four s-bots forming a square structure and swarm-
bots composed of eight s-bots forming a “star” shape (see Fig. 12). The results
show that the controller displays an ability to produce coordinated movements
independently of the swarm-bot ’s shape, although the tests that use real s-bots
show a higher drop in performance (see Fig. 11, conditions S-S4 and H-S4
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Fig. 12. Swarm-bots with different shapes. Left: a swarm-bot composed of four s-
bots forming a square shape. Right: a swarm-bot composed of eight s-bots forming
a “star” shape

for the square formation, and conditions S-S8 and H-S8 for the “star” forma-
tion). This is due to a high chance for the swarm-bot to achieve a rotational
equilibrium in which the structure rotates around its centre of mass, therefore
resulting in a very low performance. This rotational equilibrium is a stable
condition for central-symmetric shapes, but it is never observed in the exper-
imental conditions used to evolve the controller. Additionally, increasing the
size of the swarm-bots leads to a slower coordination. This not only lowers the
performance, but also increases the probability that the group falls into rota-
tional equilibrium. As a consequence, the performance of square and “star”
formation in reality is 27% and 40% lower than that in the corresponding
simulated structures.

Overall, the tests with simulated and physical robots prove that the
evolved controllers produce a self-organising system able to achieve and main-
tain coordination among the individual robots. The evolved behaviour main-
tains its properties despite the particular configuration of the swarm-bot. It
also constitutes an important building block for swarm-bots that have to per-
form more complex tasks such as coordinately moving toward a light target
[1], and coordinately exploring an environment by avoiding walls and holes
[1, 29]. In the following section, we analyse in detail one of these extensions
of the coordinated motion task, that is, hole avoidance.

3.4 Hole Avoidance

The third case study presents a set of experiments that build upon the results
on coordinated motion described above. Also in this case, we study a coor-
dination problem among the s-bots forming a swarm-bot. Additionally, s-bots
are provided with a sound-signalling system, that can be used for communi-
cation. The task we study requires the s-bots to explore an arena presenting
holes in which the robots may fall. Individual s-bots cannot avoid holes due
to their limited perceptual apparatus. In contrast, a swarm-bot can exploit
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the physical connections and the communication among its components in
order to safely navigate in the arena. Communication is an important aspect
in a social domain: insects, for example, make use of different forms of com-
munication, which serves as a regulatory mechanism of the activities of the
colony [13]. Similarly, in swarm robotics communication is often required for
the coordination of the group.

The experiments presented here bring forth a twofold contribution. We ex-
amine different communication protocols among the robots (i.e., no signalling,
handcrafted and evolved signalling), and we show that a completely evolved
approach achieves the best performance. This result is in accordance with the
assumption that evolution potentially produces a system more efficient than
those obtained with other conventional design methodologies (see Sect. 2.2).
Another important contribution of these experiments consists in the testing
of the evolved controllers on physical robots. We show that the evolved con-
trollers produce a self-organising system that is robust enough to be tested on
real s-bots, notwithstanding the huge gap between the simulation model used
for the evolution and the physical s-bot (for more details, see [27]).

Experimental Setup

The hole avoidance task has been defined for studying collective navigation
strategies for a swarm-bot that moves in environments presenting holes in
which it risks remaining trapped. For a swarm-bot to perform hole avoidance,
two main problems must be solved: (i) coordinated motion must be performed
in order to obtain coherent movements of the s-bots; (ii) the presence of holes
must be communicated to the entire group, in order to trigger a change in
the common direction of motion. We study and compare three different ap-
proaches to communication among the s-bots. In a first setup, referred to as
Direct Interactions setup (DI ), s-bots communicate only through the pulling
and pushing forces that one s-bot exerts on the others. The second and third
setups make use of direct communication through binary sound signals. In
the second setup, referred to as Direct Communication setup (DC ), the s-bots
emit a tone as a handcrafted reflex action to the perception of a hole. In the
third setup, referred to as Evolved Communication setup (EC ), the signalling
behaviour is not a priori defined, but it is left to evolution to shape the best
communication strategy.

We decided to let evolution shape the neural controller testing the swarm-
bot both in environments with and without holes. In this way, we focus on the
ability of both efficiently performing coordinated motion and avoiding falling
into holes. In all cases, the s-bots start connected in a swarm-bot formation,
and the orientation of their chassis is randomly defined, so that they need
to coordinate in order to choose a common direction of motion. Also in this
case, the s-bots are controlled by a simple perceptron network, whose param-
eters are set by the same evolutionary algorithm described in Sect. 3.2. In all
three setups (DI, DC and EC ), s-bots are equipped with traction and ground
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sensors. In DC and EC, microphones and speakers are also used. In the DC
setup, the activation of the loudspeaker has been handcrafted, simulating a
sort of reflex action: an s-bot activates the loudspeaker whenever one of its
ground sensors detects the presence of a hole. Thus, the neural network does
not control the emission of a sound signal. However, it receives the informa-
tion coming from the microphones, and evolution is responsible for shaping
the correct reaction to the perceived signals. In contrast, in the EC setup the
speaker is controlled by an additional neural output. Therefore, the complete
communication strategy is under the control of evolution.

Each genotype is evaluated in 12 trials, each lasting T = 400 control
cycles, corresponding to 40 seconds in real time. Similarly to the previous
experiments, we make use of homogeneous robots: each genotype generates
a single neural controller that is cloned and downloaded in all the s-bots. In
each trial, the behaviour of the s-bots is evaluated rewarding fast and straight
motion. Moreover, s-bots are asked to minimise the traction force perceived—
in order to perform coordinated motion—and the activation of the ground
sensors—in order to avoid holes. Finally, s-bots are strongly penalised for
every fall out of the arena in order to obtain a robust avoidance behaviour.

Results

For each setup—DI, DC and EC—the evolutionary experiments were repli-
cated ten times. All evolutionary runs were successful, each achieving a good
performance. Looking at the behaviour produced by the evolved controllers,
we observe that the initial coordination phase that leads to the coordinated
motion is performed with rules very similar to those described in Sect. 3.3. The
differences between the three setups appear once the hole avoidance behaviour
is considered.

DI setup: s-bots can rely only on direct interactions, shaped as traction forces.
Here, the s-bots that detect a hole invert the direction of motion, therefore
producing a traction force that is perceived by the rest of the group as a
signal to move away from the hole. The interactions through pushing and
pulling forces are sufficient to trigger collective hole avoidance. However,
in some cases the swarm-bot is not able to avoid falling because the sig-
nal encoded in the traction force produced may not be strong enough to
trigger the reaction of the whole group.

DC setup: s-bots can rely on both direct interactions shaped as traction forces
and direct communication through sound signals. The s-bots that detect
a hole invert their direction of motion and emit a continuous tone. In con-
trast, the s-bots that perceive a sound signal stop moving. Signalling ceases
when no s-bots perceive the hole, and coordinated motion can start again.
In this setup, direct communication reinforces the interactions through
traction forces, achieving a faster collective reaction to the perception of
the hole.
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Fig. 13. Post-evaluation analysis of the best controller produced by all evolutionary
runs of the three different setups

EC setup: Similarly to the DC setup, s-bots can exploit both traction and
sound signals. However, here, evolution is responsible for shaping both
the signalling mechanisms and the response to the perceived signals. This
results in complex signalling and reaction strategies that exploit the pos-
sibility to control the speaker. In general, signalling is associated with the
perception of a hole, but it is also inhibited in certain conditions. For ex-
ample, signals are not emitted if a strong traction force is perceived or if a
sound signal was previously emitted: in both cases, in fact, an avoidance
action was already initiated, and further signalling could only interfere
with the coordination effort.

The results obtained using direct communication seem to confirm our expecta-
tions: direct communication allows a faster reaction to the detection of a hole
and therefore a more efficient avoidance behaviour is obtained. Additionally,
the evolved communication strategy appears more adaptive than the hand-
crafted solution. This intuition is also confirmed by a quantitative analysis we
performed in order to compare the three setups.

For each evolutionary run, we selected the best individual of the final
generation and we re-evaluated it 100 times. A box-plot summarising the
performance of these individuals is shown in Fig. 13. It is easy to notice
that EC generally performs better than DC and DI, while DC seems to be
generally better than DI. On the basis of these data, we performed a statistical
analysis, which allowed us to state that the behaviours evolved within the EC
setup performs significantly better than those evolved within both the DI
and the DC setups. The latter in turn results in being significantly better
than the DI setup. We can conclude that the use of direct communication
is clearly beneficial for hole avoidance. In fact, it speeds up the reaction to
the detection of a hole, and it makes the avoidance action more reliable.
Moreover, we demonstrated, evolving the communication protocol leads to a
more adapted system.
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Fig. 14. Hole avoidance performed by a physical swarm-bot. Left: view of the arena
taken with the overhead camera. The dark line corresponds to the trajectory of the
swarm-bot in a trial lasting 900 control cycles. Right: a physical swarm-bot while
performing hole avoidance. It is possible to notice how physical connections among
the s-bots can serve as support when a robot is suspended out of the arena, still
allowing the whole system to work. Notwithstanding the above difficult situation,
the swarm-bot was able to successfully avoid falling

Tests with Physical Robots

One controller per setup was selected for tests with physical robots. Each
selected controller was evaluated in 30 trials. The behaviour of the swarm-
bot was recorded using an overhead camera, in order to track its trajectory
with a tracking software [5] (see the left part of Fig. 14). Qualitatively, the
behaviour produced by the evolved controllers tested on the physical s-bots
is very good and closely corresponds to that observed in simulation. S-bots
coordinate more slowly in reality than in simulation, taking a few seconds to
agree on a common direction of motion. Hole avoidance is also performed with
the same modalities as observed in simulation.

From a quantitative point of view, it is possible to recognise some dif-
ferences between simulation and reality, as shown in Fig. 15. We compare
the performance recorded in 100 trials in simulation with the one obtained
from the 30 trials performed in reality. Generally, we observe a decrease in the
maximum performance, mainly due to a slower coordination among the s-bots.
This means that real s-bots start moving coordinately later than the simulated
ones, both at the beginning of a trial and after the perception of a hole. This
influences the performance, as the swarm-bot cannot cover large distances
until coordination among the s-bots is achieved. With the DI controller, the
combination of tracks and wheels of the traction system brings an advantage
in hole avoidance as the s-bot that perceives the hole can produce a traction
force even if it is nearly completely suspended out of the arena. Moreover, the
high friction provided by the tracks produces higher traction forces that can
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Fig. 15. Comparison of the performance produced in the different settings by the
selected controllers tested in both simulation and reality

have a greater influence on the behaviour of the rest of the group. Similarly,
the treels system is advantageous for the DC controller, in which the s-bot
perceiving the holes pushes the other s-bots away from the arena border while
emitting a sound signal. Concerning the EC controller, in contrast, the treels
system does not lead to a clear advantage from a qualitative point of view.

On the whole, the neural controllers synthesised by artificial evolution
proved to be robust enough to be tested on physical robots, notwithstanding
the huge gap between the simulation model used for the evolution and the
actual s-bot. The performance of the controllers tested in the real world was
somewhat affected by various factors, but the difference with simulation was
never higher than 20% on average. We can therefore conclude that the trans-
ferring of the evolved self-organising behaviour from simulated to physical
s-bots was successful.

4 Conclusions

In this chapter, we have argued that self-organising behaviours represent a
viable solution for controlling a swarm robotic system, and that evolutionary
robotics techniques are a valuable design tool. There are multiple reasons
why self-organisation should be aimed at. Among these are the properties
of decentralisation, flexibility, and robustness that pertain to self-organising
systems and that are highly desirable for a swarm of autonomous robots.
However, if everything seems to fit in nicely, some problems arise when trying
to design a self-organising behaviour. In fact, the features that determine the
behaviour of a self-organising system are not explicitly coded anywhere, while
the design of a control system requires exactly the definition of the control
rules for each robot of the system. The design problem—treated in detail in
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Sect. 2—consists in filling the gap between the desired global behaviour of the
robotic system and the control rules that govern each single robot.

The three case studies presented here present a possible solution to the de-
sign problem based on evolutionary robotics. All experiments share the same
methodology, which consists in evolving neural controllers for homogeneous
groups of simulated robots. The free parameters that are varied during the
evolutionary process encode the connection weights of the neural controllers
that regulate the fine-grained interactions between the robots and the environ-
ment. Variations of the free parameters are retained or discarded on the basis
of their effect at the level of the global behaviour exhibited by the swarm
of robots. The evolved controllers are afterwards tested in simulation and,
whenever possible, also with physical robots. The analysis of the behaviours
produced by the evolutionary process is useful to assess the quality of the
obtained results. However, the same analysis can be seen from a different,
equally important, perspective, that is, the discovery and the understanding
of the basic principles underlying self-organising behaviours and collective in-
telligence. The analysis of the evolved behaviours presented in this chapter
shows how complex behavioural, cognitive and social skills might arise from
simple control mechanisms. These results are important to assess evolutionary
robotics not only as a design tool, but also as a methodology for modelling
and understanding intelligent adaptive behaviours.
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1 Introduction

Many practical optimization problems are dynamic in the sense that the best
solution changes in time. An optimization algorithm, therefore, has to both
find and subsequently track the changing optimum. Examples include the
arrival of new jobs in scheduling, changing expected profits in portfolio opti-
mization, and fluctuating demand.

Clearly, if the changes in the problem instance are radical, the best one can
do is to repeatedly solve the optimization problem from scratch. However, in
most practical applications the changes are gradual. If this is the case, it should
be possible to speed up optimization after a problem change by utilizing some
of the information on the fitness landscape gathered during the optimization
process so far. In recent years, appropriately modified evolutionary algorithms
(EAs) have been shown to achieve this successfully; see, e.g., [11, 23]; the focus
of this chapter is to present similar advances within the context of particle
swarm optimization.

Particle swarm optimization (PSO) is a versatile population-based opti-
mization technique, in many respects similar to evolutionary algorithms. Ba-
sically, particles “fly” above the fitness landscape, while a particle’s movement
is influenced by its attraction to its neighborhood best (the best solution found
by members of the particle’s social network), and its personal best (the best
solution the particle has found so far). PSO has been shown to perform well
for many static problems [32], and is introduced in more detail in Section 2.

The application of PSO to dynamic problems has been explored by var-
ious authors [9, 7, 14, 17, 19, 20, 21, 32, 29, 38]. The overall consequence of
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this work is that PSO, just like EAs, must be modified for optimal results
in dynamic environments. There are two main difficulties that need to be
addressed:

1. Outdated memory: If the problem changes, a previously good solution
stored as neighborhood or personal best may no longer be good, and will
mislead the swarm towards false optima if the memory is not updated.

2. Diversity loss: In normal operation, the swarm contracts around the
best solution found during the optimization. As has been demonstrated,
the time taken for a partially converged swarm to re-diversify, find the
shifted peak, and then re-converge is quite deleterious to performance [4].

A number of adaptations have been applied to PSO in order to solve
these difficulties; memories can be refreshed or forgotten and swarms may
be re-diversified through randomization, repulsion, and dynamic information
exchange and with the use of multi-populations. An account of these adap-
tations, and a summary of how PSO can detect change (this is especially
important when change is unpredictable), is presented in Section 3. A more
detailed review of our own work on PSO algorithms, the species PSO and the
multi-swarm PSO, is described and extended in Section 4. These approaches
are empirically tested and compared in Section 5. The chapter concludes with
a summary and some ideas for future work.

2 Particle Swarm Optimization

Optimization with particle swarms (see Chap. 2 for a detailed introduction)
has two major ingredients, the particle dynamics and the particle informa-
tion network. The particle dynamics are derived from swarm simulations in
computer graphics [34], and the information sharing component is inspired by
social networks [18, 25]. These ingredients make PSO a robust and efficient
optimizer of real-valued objective functions (although PSO has also been suc-
cessfully applied to combinatorial and discrete problems). PSO is an accepted
computational intelligence technique, sharing some qualities with evolution-
ary computation [1]. For an introduction to PSO see also Chap. 2 of this book.

In PSO, population members (particles) move over the search space ac-
cording to

v(t + 1) = v(t) + a(t + 1) (1)
x(t + 1) = x(t) + v(t + 1) (2)

where a, v, x, and t are acceleration, velocity, position and time (iteration
counter) respectively.

A particle’s acceleration a is primarily governed by attraction to two so-
lutions: its personal best and its neighborhood best. Particles possess a mem-
ory of the best (with respect to an objective function) location that they
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have visited in the past, their personal best or pbest, and of its fitness. In
addition, particles have access to the best location of any other particle in
their neighborhood, usually denoted as neighborhood best or gbest. Naturally,
these two locations will coincide if the particle has the best local best in its
neighborhood. Several neighborhood topologies have been tried, with the fully
connected network remaining a popular choice for unimodal problems. With
this neighborhood structure, every particle will share information with every
other particle in the swarm so that there is a single gbest global best attractor
representing the best location found by the entire swarm.

The particles experience a linear or spring-like attraction, weighted by a
random number, towards each attractor. Convergence towards a good solution
will not follow from these dynamics alone; the particle movement must pro-
gressively contract. This contraction is implemented by Clerc and Kennedy
with a constriction factor χ, χ < 1, [16]. For our purposes here, the Clerc-
Kennedy PSO will be taken as the canonical swarm; χ replaces other energy
draining factors such as decreasing ‘inertial weight’ and velocity clamping.

Overall, the acceleration of particle i in Eq.1 is given by

ai = χ[cε1 · (pg − xi) + cε2 · (pi − xi)] − (1 − χ)vi (3)

where ε1 and ε2 are vectors of random numbers drawn from the uniform dis-
tribution U [0, 1], c > 2 is the spring constant and pi, pg are personal and
neighborhood attractors. This formulation of the particle dynamics empha-
sizes constriction as a frictional force, opposite in direction and proportional
to velocity. Clerc and Kennedy derive a relation for χ(c): standard values are
c = 2.05 and χ = 0.729843788. The complete PSO algorithm for maximizing
an objective function f is summarized as Algorithm 2.

3 Addressing the Challenges in Dynamic Environments

As has been mentioned in Section 1, in dynamic environments, PSO suffers
from outdated memory and lost diversity. This section summarizes the ap-
proaches proposed in the literature to address these challenges. Because many
of these approaches explicitly react to a change in the landscape, we start by
discussing ways to detect a change.

3.1 Detecting a Change

In many applications, a change is known to the system, e.g., in scheduling,
when a new job arrives and has to be integrated into the schedule. If the
time of a change is not known, it has to be detected. In the literature, this is
usually done by simply re-evaluating one or more solutions, and concluding
that a change has occurred if the fitness value of at least one of these solu-
tions has changed [14, 20]. How many solutions and which ones to re-evaluate
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Algorithm 2 Canonical PSO
FOR EACH particle i

Randomly initialize vi,xi = pi

Evaluate f(pi)
g = arg max f(pi)

REPEAT
FOR EACH particle i

Update particle position xi according to Eqs. 1, 2 and 3
Evaluate f(xi)
//Update personal best
IF f(xi) > f(pi) THEN

pi = xi

//Update global best
IF f(xi) > f(pg) THEN

pg = arg max f(pi)
UNTIL termination criterion reached

may depend on the particular application. Usually, the best solution found so
far is re-evaluated, which prevents the algorithm from converging around a
previously good solution which is no longer good.

In [22], a change in the environment is detected from observing the algo-
rithm behavior, which has the advantage of also working in noisy environments
when the above re-evaluation scheme might lead to false alarms.

3.2 Memory Update

If the environment changes, the particle memory (namely the best location
visited in the past, and its corresponding fitness) may no longer be valid, with
potentially disastrous effects on the search.

This problem is typically solved in one of two ways: re-evaluating the
memory or forgetting the memory [14]. In the latter, each particle’s memory
is simply set to the particle’s current position, and the global best is updated
making sure that pg = arg max f(pi).

3.3 The Problem of Lost Diversity

If the environment changes after the swarm has converged to a peak, it takes
time for the population to re-diversify and re-converge, making it slow in
tracking a moving optimum.

The diversity loss was examined in [3] based on the swarm diameter |S|,
defined as the largest distance, along any axis, between any two particles.
When a change occurs and the new optimum location is within the collapsing
swarm, there is a good chance that a particle will find itself close to the new
optimum within a few iterations and the swarm will successfully track the
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moving target. The swarm as a whole has sufficient diversity. However, if
the new optimum is outside the swarm’s expansion, the low velocities of the
particles (which are of order |S|) will inhibit re-diversification and tracking,
and the swarm can even oscillate about a false attractor and along a line
perpendicular to the true optimum, in a phenomenon known as linear collapse
[6]. [4] uses these considerations to examine under what conditions a swarm
can track a single moving optimum.

Because of the problem of convergence, either a diversity increasing mech-
anism should be invoked at change (or at predetermined intervals), or suf-
ficient diversity has to be ensured at all times [8]. There are four principle
mechanisms proposed in the literature for either re-diversification or diversity
maintenance: randomization [20], repulsion [6], dynamic networks [21, 37] and
multi-populations [30, 7]. They will be discussed in turn in the following.

3.4 Re-diversification

Hu and Eberhart [20] study a number of re-diversification mechanisms. They
all involve randomization of the entire or part of the swarm after a change.
Since randomization implies information loss, there is a danger of erasing too
much information and effectively re-starting the swarm. On the other hand,
too little randomization might not introduce enough diversity to cope with the
change. In the multi-swarm approaches (see below), it has been suggested to
always keep one swarm searching, and randomize the least-fit swarm whenever
all swarms have converged [8]. The way quantum particles are used in this
chapter, as described in Section 4.1, can also be seen as a form of local re-
diversification.

3.5 Repulsion

A constant degree of swarm diversity can be maintained at all times through
some type of repulsive mechanism. Repulsion can be either between parti-
cles, or from an already-detected optimum. For example, Krink et al. [36]
study finite-size particles as a means of preventing premature convergence.
The hard sphere collisions produce a constant diversification pressure. Alter-
natively, Parsopoulos and Vrahatis [32] place a repeller at an already-detected
optimum, in an attempt to divert the swarm and find new optima. Neither
technique, however, has been applied to the dynamic scenario.

An example of repulsion that has been tested in a dynamic context is the
atom analogy [6, 5, 9, 7]. In this model, a swarm is comprised of ‘charged’ and
‘neutral’ particles. The charged particles repel each other, leading to a cloud
of charged particles orbiting a contracting, neutral, PSO nucleus (as shown
in Figure 1). Charge enhances diversity in the vicinity of the converging PSO
subswarm, so that optimum shifts within this cloud should be traceable. Good
tracking (outperforming canonical PSO) has been demonstrated for unimodal
dynamic environments of varying severities [4].
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Fig. 1. An example of a swarm containing both neutral and charged particles. A
solid circle denotes a neutral particle, whereas a hollow circle denotes a charged par-
ticle. |S+| and |Sn| denote the size of the charged and neutral swarms, respectively.

In [7, 8], the charged particle idea has been simplified to the quantum
particle, which does not follow the usual particle movement laws, but instead
is re-generated in each iteration at a random position in a vicinity around the
swarm’s global best. Quantum particles have been shown to be easier to con-
trol, to be computationally faster and to perform better than charged particles
in [7, 8]. More details on quantum particles are discussed in Section 4.1.

3.6 Dynamic Network Topology

Adjustments to the information-sharing topology can be made with the in-
tention of reducing, maybe temporarily, the desire to move towards the global
best position, thereby enhancing population diversity. Li and Dam [37] use
a grid-like neighborhood structure, while Janson and Middendorf [21] apply
a tree-like structure. Both papers report improvements over unmodified PSO
for unimodal dynamic environments. In the latter approach, the particles can
change places in the hierarchy, In [22], it has been additionally suggested to
break up the tree into sub-trees after a change, so that they can independently
search for a new optimum for a while, until they are joined again.

A division of the swarm into subswarms is intuitively helpful in dynamic
multi-modal environments, where several promising regions of the search space
can be tracked simultaneously. This is the core idea of the speciation PSO
(SPSO) proposed in [27, 30], and the multi-swarm PSO (MPSO) proposed in
[7, 8]. SPSO uses a fixed swarm size and dynamically divides the swarm into
subswarms based on a technique known as clearing [33]. MPSO, on the other
hand, has a set of swarms of predetermined size, and adjusts the number of
such swarms during the run, thereby also changing the overall population size.
These two approaches are examined in more detail below.
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4 Multi-swarms and Speciation

The authors of this chapter have independently proposed two different ap-
proaches which divide the swarm into a number of subswarms: the multi-
swarm PSO (MPSO, [7, 8]) and the speciation-based PSO (SPSO, [27, 31, 28]).
The motivation for both approaches is that in a dynamic environment, it is
useful to maintain information about several promising regions of the search
space. This proposition was already the motivation behind the self-organizing
scouts approach [11] and has recently been confirmed also in [12]. By dividing
up the swarm, the subswarms may simultaneously track different promising
regions of the search space. This is particularly helpful if the environment
changes in a way that makes a previous local optimum the new global opti-
mum. If one of the subswarms was tracking the local optimum or a nearby
region, the new global optimum is immediately found.

In this section, we describe the previously proposed MPSO and SPSO
in detail and also present some new extensions. The approaches are then
compared empirically in Section 5. Because both approaches now use quantum
particles, these are discussed first.

4.1 Quantum Particles

The quantum particles have been proposed in [7] as a means to maintaining a
certain level of diversity within a swarm. They have been inspired by atomic
models. In a classical atom, a number of electrons orbit, at various distances,
a small ball of nucleons. The picture is altered in the quantum atom; the elec-
trons do not orbit in deterministic paths but are distributed in a probability
‘cloud’ around the nucleus. The PSO atom consists of a nucleus of normal PSO
particles moving under the normal update rules. Typically this nucleus will be
shrinking in size as it converges on an optimum. The nucleus is surrounded by
quantum particles. Quantum particles do not follow PSO dynamics but are
placed at positions around the center of the nucleus, defined by pg, according
to a probability distribution. As a result, they do not converge, but maintain
a constant level of diversity.

Different probability distributions are conceivable. It is reasonable to as-
sume that the quantum probability distribution should be spherically sym-
metric, i.e., shells of constant density centered on pg. In the following, three
different distributions are considered: The Gaussian distribution, the uniform
volume distribution (UVD), and a non-uniform volume distribution (NUVD);
see Figure 2 for examples in a two-dimensional space. The UVD in d dimen-
sions can be generated as follows [15]:

1. Generate a point xi from N [0, 1] for 1 ≤ i ≤ d.

2. Calculate the distance of xi to the origin dist =
√∑i=d

i=1 x2
i .

3. Select a value u from U [0, 1].
4. The new point will be rcloud · xi

d
√

u
dist .
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(c) NUVD

Fig. 2. 1,000 sampling points for a Gaussian distribution, a uniform volume distri-
bution (UVD), and a non-uniform volume distribution (NUVD), in two dimensions.

rcloud is a parameter defining the radius of the distribution.
The above procedure can be modified to generate other distributions by

simply changing the distribution for u. For example, instead of selecting u
from U [0, 1] in Step 3, Gaussian N [0, σ] can be used with σ set to roughly 1

3 ,
since in a Gaussian distribution with 3σ away from the mean would cover 99%
of all possible samples. This would create a distribution with higher density
closer to mean. When changing the calculation of the new solution in Step 4
to rcloud · xi

u
dist , one obtains the non-uniform volume distribution (NUVD)

where the density decreases linearly with distance from the center.
Quantum particles are somehow related to the bare-bones PSO proposed

by Kennedy, where each dimension of the new position of a particle is ran-
domly selected from a Gaussian distribution with the mean being the average
of pi and pg and the standard deviation σ being the distance between pi and
pg [24]:

xi ← N (
pi + pg

2
, ||pi − pg||) (4)

Richer and Blackwell also reported work on PSO variants employing Gaus-
sian distribution [35], as well as the more general Lévy distribution4. Algo-
rithms employing a Lévy or Cauchy distribution, which both have a long
fat tail, are more capable of escaping local optima than the Gaussian counter-
part. Escape from local optima is profitable in circumstances in which a single
global optimum must be found. In the context of tracking moving peaks in a
multi-modal dynamic environment, we are more interested in finding multiple
peaks in parallel so that when peaks move the optimizer still has a chance to
relocate them. Distributions that can provide good sampling in an adjacent
area of the peaks would be more suitable; hence the Gaussian distribution is
preferred.

4 The shape of the Lévy distribution can be controlled by a parameter α. For α = 2
it is equivalent to Gaussian distribution, whereas for α = 1 it is equivalent to the
Cauchy distribution [35].
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4.2 Multi-swarm PSO

The multi-swarm PSO (MPSO) was originally proposed in [7] and then ex-
tended in [8] and [2]. It maintains diversity on two levels: the swarm is divided
into a number of subswarms which are forced to different areas of the search
space (diversity between swarms), and each swarm has some quantum parti-
cles to ensure diversity within the swarm.

Basic Features

The MPSO proposed in [8] uses the following mechanisms:

• Change Detection and Outdated Memory: For change detection, in
each iteration, a subswarm’s global best is re-evaluated. If the fitness value
has changed, a change is detected and all of the subswarm’s personal best
are re-evaluated before commencing.

• Multiple Swarms: The particles in MPSO are divided into a number of
M independent subswarms. Each subswarm in MPSO has a fixed number
of particles. Information sharing within a swarm is global, i.e., any good
position found by any particle (neutral or quantum) is available to any
other. It is known that a global information topology between particles
produces better optimization of a uni-modal environment, whereas a local
topology is preferred in the multi-modal situation. Even if the landscape is
multi-modal, the role of the neutral PSO is to climb up a single peak. The
diversity needed to find peaks stems from a dynamic interaction between
separate swarms (exclusion, see below) rather than information transfer
between social neighborhoods of a single swarm.

• Exclusion: Intuitively, several swarms sitting on the same local optimum
are not very helpful; they should explore different promising regions of
the search space. To this end, a so-called exclusion operator is employed.
Swarm exclusion forbids two swarms moving to within rexcl of each other,
where the distance between swarms is defined as the distance between
their pg’s. When exclusion is invoked, the worse swarm, as judged by the
current best values f(pg), is randomized in the entire search space.

• Anti-convergence: Exclusion makes sure that the different swarms con-
verge to different local optima. In order to be able to detect also new,
emerging peaks, MPSO contains an additional mechanism termed anti-
convergence in [8]: Whenever all swarms have converged, the least-fit
swarm (as judged again by the current best values f(pg)) is randomized
in the entire search space. Thereby, a swarm is considered as converged
when its expansion, i.e., the radius of the smallest circle encompassing the
neutral particles, is less than rconv. Anti-convergence is particularly im-
portant if the number of swarms is significantly smaller than the number
of local optima, in which case each swarm might converge to and get stuck
on a different local optimum.
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• Quantum Particles: Each swarm in MPSO consists of a number N0 of
neutral particles and a number NQ of quantum particles. The quantum
particles are generated in each iteration according to a UVD distribution
with parameter rcloud around the swarm’s pg.

Parameter Settings

MPSO as described so far introduces a number of new parameters: the number
M of swarms, the number of quantum particles NQ, the exclusion distance
rexcl, and the quantum cloud radius rcloud. Several guidelines for setting these
parameters are provided in [8] and shall be briefly summarized here. Intu-
itively, there is a relationship between the distance a local optimum shifts, s,
and the quantum cloud parameter rcloud. It is expected that these factors are
of the same order of magnitude so that a quantum particle might be found
close to the new optimum. Previous experiments have shown that rcloud = 0.5s
is a good default setting. rexcl can be estimated by assuming that all p peaks
occupy the same portion of the search space Xd. The radius rboa of the basin
of attraction of a peak is then p · rd

boa = Xd, or rboa = X/p1/d. The exclu-
sion radius rexcl is thus set to rboa. The multi-swarm cardinality M can be
estimated from the number of optima, p. If possible we would expect that
M > p is undesirable since free swarms absorb valuable function evaluations
and there is no need to have many more swarms than peaks. Similarly, many
fewer swarms than peaks means the multi-swarm is in danger of missing good
locations.

Self-adaptation of the Number of Swarms

Because usually the number of peaks is not known beforehand, the number of
swarms, M , might be difficult to set. For this reason, in [2], a self-adaptation
mechanism for the number of swarms has been proposed. The mechanism for
this is quite simple. The multi-swarm will need a new, patrolling swarm, if all
current swarms are converging. On the other hand, too many free swarms will
absorb function evaluations and one should be removed. If there is more than
one free swarm, the choice for removal is arbitrary and the worst of the free
swarms is removed, as judged by f(pg). This birth/death mechanism removes
the need for the anti-convergence operator, and for specifying the multi-swarm
cardinality M .

The number of swarms M(t) is then dynamic and at any iteration t given
by

M(0) = 1

M(t) =
{

M(t − 1) + 1, Mfree = 0
M(t − 1) − 1, Mfree > nexcess

(5)

where nexcess is a parameter specifying the desired number of free swarms,
and a free swarm is a swarm whose expansion is larger than rconv. An intuitive
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choice is to allow just a single free swarm, nexcess = 1, as one swarm roaming
around and searching for new peaks should be sufficient. Setting nexcess = ∞
means that no swarm can ever be removed and the multi-swarm can only
grow.

When the number of swarms is adapted, rexcl can also be adapted by
assuming that M corresponds to the number of peaks:

rexcl =
X

2M1/d
(6)

where X is the extent of the search space in each dimension.
Note that this adaptation scheme, by changing the number of swarms, also

changes the overall number of particles. In practice, the number of swarms
should be bounded. Too many particles will slow down the PSO, as each
particle is processed less frequently. But in the empirical tests reported below,
no such bound was used.

Particle Conversion

Finally, let us propose another modification of the original MPSO. In the
original MPSO, each population has a fixed number of neutral and quantum
particles. Intuitively, quantum particles are most useful at or just after an en-
vironmental change, where they provide the tracking that a tightly converged
swarm cannot perform. Their role during environmentally stable periods is
less clear. Thus, we propose here to convert all neutral particles to quantum
particles for one iteration immediately after a change has been detected. After
this iteration, they are reverted back to neutral. We expect that this mech-
anism might allow us to reduce the number of permanent quantum particles
in a population.

The overall algorithm is summarized in Algorithm 3.

4.3 Speciation-Based PSO

Other than the just-discussed MPSO which uses fixed swarms with a fixed
number of particles each, the speciation-based PSO (SPSO) is able to dynam-
ically distribute particles to species. It was inspired by a clearing procedure
proposed in [33]. SPSO was developed based on the notion of species [27].
The definition of species depends on a parameter rs, which denotes the radius
measured in Euclidean distance from the center of a species to its boundary.
The center of a species, the so-called species seed, is always the best-fit particle
in the species. All particles that fall within distance rs from the species seed
are classified as the same species.

Algorithm 4 summarizes the steps for determining species seeds [26]. By
performing this algorithm at each iteration step, each different species seed
can be identified for a different species and the seed’s pi can be used as the
pg for particles belonging to that species accordingly [27, 31].
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Algorithm 3 Multi-Swarm
//Initialization

Begin with a single free swarm, M = 1
FOR EACH particle ni

Randomly initialize vni,xni = pni

Evaluate f(pni)
FOR EACH swarm n

png := argmax{f(pni)}

REPEAT
// Adapt number of swarms
IF all swarms have converged THEN

Generate a new swarm.
ELSE IF (Mfree > nexcess) THEN

Remove worst swarm.
FOR EACH swarm n

// Test for Change
Evaluate f(png).
IF new value is different from last iteration THEN

Convert all particles to quantum particles for one iteration.
Re-evaluate each particle attractor.
Update swarm attractor.

FOR EACH particle i of swarm n
// Update Particle
Move particle depending on particle type.
// Update Attractor
Evaluate f(xni).
IF f(xni) > f(pni) THEN

pni := xni.
IF f(xni) > f(png) THEN

png := xni

// Exclusion.
FOR EACH swarm m �= n

IF swarm attractor png is within rexcl of pmg THEN
IF f(png) ≤ f(pmg) THEN

Re-initialize swarm n
ELSE

Re-initialize swarm m
FOR EACH particle in re-initialized swarm

Re-evaluate function value.
Update swarm attractor.

UNTIL number of function evaluations performed > max
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Algorithm 4 Algorithm for determining species seeds
//Lsorted - a list of particles sorted in their decreasing f(pi) values
//S - a list of dominating particles identified as species seeds
S = ∅
REPEAT

Get the best unprocessed p ∈ Lsorted

found ← FALSE
FOR all s ∈ S

IF d(s, p) ≤ rs THEN
found ← TRUE
break

IF notfound THEN
let S ← S ∪ {p}

UNTIL reaching the end of Lsorted

Basically Algorithm 4 sorts all particles in decreasing order of the fitness
values of their personal bests pi

5. The species seed set S is initially set to ∅.
All particles’ pi are checked in turn (from best to least fit) against the species
seeds found so far. If a particle’s pi does not fall within the radius rs of all
the seeds of S, then this particle will become a new seed and be added to
S. Figure 3 provides an example to illustrate the working of this algorithm.
In this case, applying the algorithm will identify s1, s2 and s3 as the species
seeds. Note also that if seeds have their radii overlapped (e.g., s2 and s3 here),
the first identified seed (such as s2) will dominate over those less fit seeds in
the list Lsorted. For example, s2 dominates s3; therefore p should belong to
the species led by s2. This has the nice side-effect of helping SPSO to locate
the fitter peaks before the less fit ones.

The identified species seeds represent particles that are highly fit and at
least distance rs away from each other. Since a species seed is the best-fit
particle’s pi within a species, all particles belonging to the same species can be
made to follow their species seed’s pi as their leader (i.e., neighborhood best).
Each species acts as a separate PSO with all its particles moving according to
the conventional particle velocity rules. The sorting of particles, determination
of species seeds, and allocation of species seeds as leaders to particles are
performed at each iteration, which have the effect of moving particles within
the same species to positions that make them even fitter. Because species are
formed around different peaks in parallel, species seeds will provide the right
guidance for particles to converge towards different peaks that exist on the
fitness landscape. Comparing with the multi-swarm concept introduced in the
earlier sections, a species in SPSO is equivalent to an individual swarm of the

5 Note that in our previous implementation, the fitness values of current particle
positions xi were sorted [27, 28]. We changed to use particle’s personal best pi

because it is a more stable point compared with xi
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Fig. 3. An example of determining species seeds from a population of particles. s1,
s2, and s3 are chosen as the species seeds; for the other particles, arrows indicate
which species seed they are attracted to. Note that p falls within the radius rs of
two seeds but follows s2 as the seed which was identified earlier.

multi-swarm model, but the particles are re-distributed to species dynamically
in each iteration, resulting in a variable number of species with different sizes.

To detect whether a change has occurred, SPSO simply re-evaluates the
recorded personal best positions of the top t best species seeds at each itera-
tion. A change is considered to have occurred if any of these t re-evaluations is
different from its corresponding personal best’s recorded fitness. All particles’
personal bests are then reset to their associated current positions since these
recorded personal bests are outdated.

Species Cap, Quantum Swarm, and Anti-convergence

This section describes several useful techniques incorporated into SPSO to
enhance its performance in dynamic environments [28].

Since the algorithm for identifying species seeds favors those seeds with
higher fitness values resulting in more particles being allocated to fitter species
than to less fit ones, on a multi-modal fitness landscape this may result in too
many particles assigned to just a few very best peaks while leaving other lower
peaks unoccupied. In order to distribute more evenly the number of particles
across different species, a parameter pmax can be used to set a maximum
number of particles that a species is allowed [30]. This means that only the
best-fit pmax particles will be allocated as members of a species. Least-fit
members that cause the species population to exceed pmax are reinitialized
as randomly generated new particles into the search space, as a side-effect
helping SPSO better explore the search space.

The quantum atom model described in Section 4.1 is also adopted in SPSO,
but as described in [28], only triggered by convergence: When the neutral par-
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ticles belonging to a species converge below a pre-specified threshold (largest
distance between any pair of particles), half of the neutral particles are con-
verted to quantum particles around the species seed to form a ‘quantum cloud’.

Anti-convergence was first proposed and used as an effective mechanism for
global information sharing in the multi-swarm model [8] (see also Section 4.2).
This idea can be adopted in SPSO to reduce the number of less fit species
[28] and to improve information sharing among species. Anti-convergence is
carried out simply by replacing the least-fit species and reinitializing them into
the search space at each iteration step. While this seems drastic, note that the
speciation procedure usually results in some isolated particles forming species
of size 1. Anti-convergence as implemented here randomizes these until they
either discover a promising region or are close enough to join a larger species.

4.4 Improving Local Convergence

SPSO is shown to be an effective optimizer for solving static multi-modal
problems [31], and with enhancements described in the previous section, it
can be used for handling multi-modal problems in a dynamic environment
[28]. In order to track moving peaks, SPSO must be able to locate peaks and
follow them as closely as possible if they have moved. It is observed that SPSO
can consistently locate the majority of the peaks most of the time. However,
relocating moved peaks with a satisfactory convergence speed (so as to reduce
the offline error) still remains as a challenge. Techniques promoting faster
local convergence would be desirable to tackle this problem.

The convergence-triggered strategy as described above and in [28] keeps
the particles in a species spread out so that the species will have a better
chance to recapture the peak if it has moved again. The downside is that
these quantum particles contribute little to the local convergence of the species
most of the time. Although changes occur only occasionally, at each iteration
quantum particles are generated to form a ‘cloud’ spreading out around the
species seed, rather than being used to converge towards the species attractor,
like the neutral particles.

In this study, instead of using the usual quantum ‘cloud’ approach, for
one iteration after a change has been detected, all particles are moved as
quantum particles, i.e., to a randomly selected position according to a given
distribution. Also, we found that centering the distribution not around the
species’ seed, but around the center of species seed and particle position, has
slight advantages. After this, all particles will move again as neutral particles
according to their allocated seed and personal best positions, following the
standard PSO velocity update rules. This new variant of SPSO is summarized
in Algorithm 5.
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Algorithm 5 SPSO with local sampling
//Initialization
FOR EACH particle i

Randomly initialize vi,xi, pi = xi

REPEAT
FOR EACH particle i

Evaluate f(xi)
//Update personal best
IF f(xi) > f(pi) THEN

pi ← xi

IF change is detected THEN
pi ← xi

//Following steps are carried out at each iteration
Sort particles in descending order of their pi fitness values
Identify species seeds from the above sorted list based on rs

pi of each species seed is assigned as the leader (neighborhood best) to
all particles belonging to the same species
IF numParticles > pmax THEN

Anti-convergence to replace the excess particles with new particles
Replace particles in the least-fit species by initializing them
Adjust all particle positions according to Eqs. (1) and (2)
//Invoke local sampling only if change is detected
IF change is detected THEN

Generate a new particle for each particle by local sampling
UNTIL number of function evaluations performed > max

5 Empirical Results

5.1 Moving Peaks Benchmark and Experimental Setup

For empirical tests, we used the publicly available moving peaks benchmark
(MPB) [10]. It consists of p peaks changing in height and width, and moving by
a fixed shift length s in random directions every K evaluations. The peaks are
constrained to move in a search space of extent X in each of the d dimensions,
[0,X]d.

Unless stated otherwise, the parameters have been set as follows: the search
space has five dimensions X5 = [0, 100]5, there are p = 10 peaks, the peak
heights vary randomly in the interval [30, 70], and the peak width parameters
vary randomly within [1, 12]. The peaks change position every K = 5000
evaluations by a distance of s = 1 in a random direction, and their movements
are uncorrelated (the MPB coefficient λ = 0). These parameter settings are
summarized in Table 1. They correspond to Scenario 2 in [10] and have been
used to facilitate comparison with other published results. The termination
condition for each experiment is 100 peak changes, corresponding to 500,000
function evaluations.
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Table 1. Standard settings for the moving peaks benchmark

Parameter Setting

Number of peaks p 10
Number of dimensions d 5

Peak heights ∈ [30, 70]
Peak widths ∈ [1, 12]

Evals between changes 5000
Change severity s 1.0

Correlation coefficient λ 0

Scenario 2 actually specifies a family of benchmark functions, since the
initial location, initial height and width of the peaks, and their subsequent
development is determined by a pseudorandom number generator. All our
results are based on averages over 50 runs, where each run uses a different
random number seed for the optimization algorithm as well as the MPB. The
primary performance measure is the offline error [13] which is the average
over, at every point in time, the error of the best solution found since the last
change of the environment. This measure is always greater than or equal to 0
and would be 0 for perfect tracking.

Unless specified otherwise, PSO acceleration parameters χ and c are set to
standard values 0.72984 and 2.05, respectively. For MPSO, parameters were
set according to the guidelines from Section 4.2, and nexcess was set to 1. For
SPSO, the overall population size was set to 100, pmax was set to 10, and
t = 5 best species seeds were re-evaluated to detect a change.

5.2 Optimal Swarm Size

We begin by determining the optimum neutral swarm size for a single sta-
tionary peak in five dimensions. Since canonical PSO does not use the local
shape of the function, all spherically symmetric peaks are equivalent. Table
5.2 reports on tests of the neutral subswarm, which is a canonical PSO. The
results demonstrate that a small, five-particle swarm is the best hill climber in
5 dimensions. We will therefore set the number of neutral particles in MPSO
swarms to five.

5.3 Quantum Particles in MPSO

In previous experiments [8], it was shown that a swarm’s particles should be
divided equally into neutral and quantum particles performed, and swarms
with five neutral and five quantum particles yielded best results. However, in
Section 4.2, we have proposed converting the neutral particles to quantum
particles for one iteration after a change has been detected, hoping this would
allow us to reduce the number of quantum particles in a swarm.



210 T. Blackwell, J. Branke and X. Li

Table 2. Performance of canonical PSO for a single cone, f(x) = |x∗ − x|. The
table shows the best f attained after 2,500 evaluations, averaged over 100 runs with
differing initial configurations and cone position

Number of particles f (std error)

1 65.62 (2.37)
2 6.86( 1.00)
3 0.0072 (0.0066)
4 5.43E-8 (4.17)
5 3.64E-10 (1.52E-10)
6 1.18E-9 (3.59E-10)
7 9.40E-9 (1.90E-9)
8 6.64E-8 (1.52E-8)
9 2.87E-7 (5.34E-8)
10 9.13E-7 (1.12E-7)

Table 5.3 shows results for MPSO on the MPB (p = 10, s = 1.0) for various
swarm configurations. A configuration with a neutral particles and b quantum
particles is denoted as (a + b). As can be seen, even the (5 + 0) configuration,
which has no permanent quantum particles (only the converted particles at the
iteration immediately following function change), performs remarkably well.
The optimum configuration appears to have just one permanent quantum
particle for both values of nexcess. Without particle conversion after a change,
a (5 + 1) MPSO obtains an offline error of only 2.05 (0.08). This confirms
our hope that we might be able to reduce the overall number of particles
due to the conversion method. It also demonstrates the importance of the
exclusion operator which continuously repositions swarms until they find a
peak to settle on. After this happens, swarm diversity is not required and the
neutral particles will rapidly converge to the center of the peak. The presence
of a small amount of diversity, i.e., just one quantum particle, presumably
helps tracking in the few iterations just after the function change.

Comparing the results for nexcess = 1 and nexcess = 3, we see that dif-
ferences are small, but slightly better results are obtained with three rather
than one patrolling swarms. So, nexcess can be used for fine-tuning if neces-
sary, but nexcess = 1 seems a good and intuitively justifiable default setting.
This was also confirmed in some additional tests with only one peak or 200
peaks, where nexcess = 1 performed slightly better than nexcess = 3.

5.4 Quantum Distribution in SPSO

The following experiments look at the influence of the quantum distribution
in scenarios with p = 10 peaks and with shift severity s ∈ {1, 5}.

Table 5.4 provides the results on offline errors using Gaussian, UVD and
NUVD distribution respectively. These results are also visualized in Figure 4.
The best offline error for Gaussian distribution is 1.73, at σ = 0.3. The best
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Table 3. Variation of average offline error with swarm configuration and excess
parameter for MPSO. The data is for 50 runs of MPB, scenario 2, p = 10, and s =
1.0 and with 500,000 evaluations per run

Configuration oe (std error), nexcess = 1 oe (std error), nexcess = 3

5 + 0 1.80 (0.08) 1.85 (0.07)
5 + 1 1.73 (0.08) 1.69 (0.07)
5 + 2 1.85 (0.09) 1.69 (0.06)
5 + 3 1.82 (0.09) 1.83 (0.07)
5 + 4 1.77 (0.07) 1.88 (0.07)
5 + 5 1.85 (0.09) 1.92 (0.08)

Table 4. Offline errors for sampling using UVD and NUVD distribution with radius
rcloud, and Gaussian with standard deviation σ (set to rcloud). The shift severity
value s = 1.0 and p = 10

rcloud Gaussian UVD NUVD

0.05 1.86 (0.06) 2.24 (0.07) 2.31 (0.07)
0.1 1.82 (0.06) 1.97 (0.07) 2.02 (0.07)
0.2 1.84 (0.07) 1.72 (0.06) 1.78 (0.04)
0.3 1.73 (0.05) 1.74 (0.07) 1.74 (0.08)
0.4 1.85 (0.06) 1.64 (0.06) 1.73 (0.06)
0.5 2.00 (0.08) 1.77 (0.06) 1.62 (0.05)
0.6 1.94 (0.06) 1.84 (0.08) 1.69 (0.06)
0.7 2.23 (0.06) 1.76 (0.06) 1.66 (0.05)
0.8 2.29 (0.07) 1.79 (0.06) 1.87 (0.07)
0.9 2.42 (0.06) 1.78 (0.05) 1.98 (0.06)
1.0 2.55 (0.06) 1.79 (0.06) 1.89 (0.05)
1.2 2.75 (0.07) 2.01 (0.07) 1.89 (0.05)
1.5 3.07 (0.09) 2.09 (0.06) 1.95 (0.06)
2.0 3.48 (0.08) 2.40 (0.09) 2.12 (0.06)

result for UVD is 1.64 at rcloud = 0.4, and for NUVD is 1.62 at rcloud = 0.5.
The differences between the results of UVD and NUVD are insignificant, but
both the best results for UVD (1.64) and NUVD (1.62) are better than the
best for Gaussian (1.73). These results show that sampling more frequently
closer to the mean is not always beneficial for the purpose of the quantum
particles. The reason may be that their task is not local improvement (as, e.g.,
for mutations), but exploration. In any case, the results are are better than the
1.98 reported previously with the convergence-triggered particle diversification
scheme [28].

The scenario with s = 5.0 should be more difficult to track than the s = 1.0
counterpart. Consequently, the performance values summarized in Table 5.4
report higher offline errors. Note that rcloud values in the range [1.0, 5.0] were
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Fig. 4. Offline errors depending on radius rcloud and distribution used for sampling.

Table 5. Offline errors for sampling using Gaussian, UVD, and NUVD distribution,
on scenario 2. The shift severity s = 5.0 and p = 10.

rcloud Gaussian UVD NUVD

1.0 4.53(0.10) 4.43(0.10) 4.53(0.12)
1.5 4.62(0.09) 4.20(0.11) 4.36(0.08)
2.0 5.06(0.09) 4.15(0.08) 4.47(0.09)
2.5 5.54(0.11) 4.28(0.09) 4.56(0.10)
3.0 5.68(0.13) 4.43(0.09) 4.62(0.08)
3.5 6.29(0.11) 4.58(0.13) 4.79(0.11)
4.0 6.40(0.11) 4.61(0.12) 4.97(0.10)
4.5 7.15(0.13) 4.85(0.11) 4.86(0.11)
5.0 7.85(0.17) 4.93(0.12) 5.20(0.11)

used to reflect our assumption that rcloud ≈ s/2 should be a good default
value, which is also confirmed with the empirical data.

Again, UVD performs better than NUVD and Gaussian. The best offline
error was obtained by UVD with an offline error 4.15, at rcloud = 2.0.

5.5 Adapting the Number of Swarms

Both MPSO and SPSO have mechanisms to adapt the number of swarms over
time. While MPSO starts with a single swarm and adds additional swarms
as needed, SPSO usually starts with many swarms, slowly converging to the
required number of swarms to cover all peaks.

Fig. 5 shows a typical SPSO simulation run for an MPB problem with
p = 10 and s = 1. As expected, SPSO starts with a large number of species
seeds, but over iterations this number decreases to a value close to the number
of existing peaks (if they are found). Anti-convergence is particularly effective
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Fig. 6. The number of swarms in MPSO for a ten peak MPB problem.

during the early stage of the run in replacing the least-fit species with new
particles that can be better used to explore other parts of the search space.
Although it is possible that anti-convergence may remove a species that has
already occupied a peak, the chance of this being the best-fit peak is small
since the removed species is always the least-fit species. Furthermore, the
best-fit peak is most likely watched and tracked by the fittest species.

The number of swarms in a typical MPSO run for a ten-peak MPB problem
and with nexcess = 3 is shown in Figure 6. The figure displays both the number
of converged swarms at any stage of the optimization, and the number of free
swarms, where a swarm is deemed to be converging if its spatial extent is less
than a convergence radius. This distance is dynamically determined by Eq. 6.

In the environment with 200 peaks and s = 5, SPSO with a population size
of 100 is no longer able to cover all the peaks, and fluctuates between 20 and 30
species. MPSO, although potentially able to add an arbitrary number of sub-
populations, converges only slightly higher to around 32 subpopulations. One
reason for this convergence is certainly that of the 200 peaks, several smaller
peaks are “covered” by higher peaks and thus not visible to the swarm, or
they are too close to be regarded as separate peaks. Another reason may be
that increasing the number of subpopulations also increases the total num-
ber of particles and thus slows down convergence, which leads to a slower
convergence of swarms and thus fewer new swarms being spawned.
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5.6 Comparing MPSO and SPSO

In this section, we compare MPSO and SPSO on four scenarios: shift severity
s ∈ {1, 5} and number of peaks p ∈ {10, 200}. Default parameters are used
i.e., rcloud = 0.5s (SPSO, MPSO), nexcess = 1 (MPSO), pmax = p (SPSO)
and the UVD distribution (MPSO, SPSO). The exclusion radius and number
of swarms (MPSO) are set dynamically according to Eqs. 5 and 6.

Table 6. Comparison of MPSO and SPSO on four test scenarios. Offline error and
standard error

s p MPSO SPSO

1 10 1.73 (0.08) 1.77 (0.06)
1 200 2.18 (0.02) 2.88 (0.04)
5 10 3.52 (0.11) 4.28 (0.09)
5 200 3.93 (0.03) 4.36 (0.05)

For s = 1 and p = 200, the average offline error of MPSO was found
to be 2.12(0.02), a figure which compares favorably with the best previous
adaptive MPSO result without particle conversion and nexcess = 4 of 2.37
(0.03) [2]. This is also slightly better than the 10 (5 + 5) MPSO result of 2.26
(0.03) of the original version in [8], although it does not require us to specify
the number of swarms. For SPSO, the offline error obtained is 2.88 (0.04),
i.e., slightly worse. One possible explanation is that SPSO can not adjust the
overall number of particles, and that the individual species are becoming too
small to successfully track the moving peaks.

Both approaches suffer significantly as the shift severity is increased to
s = 5, although it seems that MPSO is slightly better in this scenario.

6 Conclusions

This chapter has reviewed the application of particle swarms to dynamic op-
timization. The canonical PSO algorithm must be modified for good per-
formance in dynamic environments. In particular the problems of outdated
memory information and diversity loss must be addressed. Two promising
PSO variants are the multi-swarm PSO (MPSO) and the speciation-based
PSO (SPSO). They both maintain diversity by dividing the swarm into sev-
eral subswarms. While MPSO starts with a single swarm and adds additional
swarms as needed (all consisting of a predefined number of particles), SPSO
has a fixed overall number of particles and dynamically distributes particles
to swarms, usually starting with many swarms, slowly converging to the re-
quired number of swarms to cover all peaks. Also, they both use a mechanism
to maintain diversity within a swarm. We have described MPSO and SPSO in
detail and suggested new variations of both. For both approaches, we suggest
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a reduction of the number of permanent quantum particles and a conversion of
all neutral particles to quantum particles for one iteration only after a change
has been detected. This approach seems to be more efficient as it speeds up
convergence towards local peaks by maximizing its use of neutral particles.
On the other hand, it still provides the diversity necessary to recapture a
peak after it has moved. Also, we looked at the influence of the probability
distribution for the quantum particles on performance.

As the empirical results showed, both variants outperform their previously
published originals. Among the examined distributions, the uniform volume
distribution outperformed the distributions with higher sampling probability
around the species’ best. On the other hand, the best possible radius is signif-
icantly less than the actual distance a peak shifts. The reason for the benefit
of the uniform distribution is probably that the task for the quantum particles
is exploration and tracking, rather than fine-tuning, which is better done by
the neutral particles. The reason for the smaller radius is probably that as
particles generated still possess velocities, placing them too close to the new
peak might not be necessarily better, as the particles tend to ‘overshoot’ the
optimum frequently.

Overall, the performance of MPSO and SPSO is comparable on slowly
changing problems with fewer peaks, but MPSO seemed to be able to better
cope with many peaks, while SPSO seems to be better when the changes are
more severe.

Future work will aim at making both approaches more flexible, allowing
MPSO to adapt the number of particles within a species, and SPSO to adapt
the overall number of particles.
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Summary. The chapter describes the modeling of a material handling system with
the production of individual units in a scheduled order. The units represent the
agents in the model and are transported in the system which is abstracted as a
directed graph. Since the hindrances of units on their path to the destination can lead
to inefficiencies in the production, the blockages of units are to be reduced. Therefore,
the units operate in the system by means of local interactions in the conveying
elements and indirect interactions based on a measure of possible hindrances. If
most of the units behave cooperatively (“socially”), the blockings in the system are
reduced.

A simulation based on the model shows the collective behavior of the units
in the system. The transport processes in the simulation can be compared with
the processes in a real plant, which draws conclusions about the consequences of
production based on superordinate planning.

1 Introduction

Since the world is becoming more and more complex, linear models developed
in the past are increasingly failing to produce effective management tools.
While the forecast for the behavior of systems such as production networks
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is of crucial interest to those who have to make strategic, planning, and op-
erational decisions within a plant, current approaches are often insufficient to
cope with the occuring dynamics.

Transfer car on 
its track system

Roller conveyor with 
lifting equipment

Fig. 1. Left: Two stacks on a deck position of an automated guided transfer car at an
intersection to a roller conveyor [33]. Right: Schematic representation of the element
in the left figure. The change of the movement direction on the conveyor is performed
by a short roller conveyor with lifting equipment (so-called chain crossover) and is
marked by a circle.

In the following, the modeling of complex production networks – in partic-
ular of the packaging industry – will be described. Figure 1 shows an element
of the transport and buffer system in one of the modeled production plants
and its presentation within the simulation software.

When modeling a general transport and buffer system within a multistage
production network, one has to consider that the units (i.e. the intermediate
products or work in process [43]) leave a machine in the order of their produc-
tion, but are often scheduled for the next production step in a different order.
Thus, a sorting of the units within the system is necessary (see Fig. 2). Since
the planning of the production program for all machines is done centrally and
in advance, the model has to take into account the given production programs.
The model has to describe both, the characteristics of the transport and buffer
system and the movement of the production units within the system.

The implications resulting from the required sorting of units in the system
are described in Fig. 2. There, the workstation processes four units. The units
X1 and X2 are authorized to enter the input buffer of the workstation first.
Since X1 and X2 belong to the same job within the production program, i.e.
they are the same type of product, they are accepted at the workstation in
any order. In our example, however, both units X1 and X2 are blocked by the
units Y1 and Y2. Thus, Y1 and Y2 have to be removed from the lanes first. Y1

will relocate to the next buffer area on its way to the destination. Y2 can just
be transferred to the same buffer area again and, therefore, has to execute a
relocation cycle.
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Relocation by transport 
into the same buffer 
area (relocation cycle)

Relocation by transport 
into a buffer area near 
the destination 

Input buffer of the work-
station (destination)

X2

X1

Y2

Y1

Sequence of the arrival at 
the destination: 
• first units X1 and X2
• then units Y1 and Y2

Fig. 2. To meet the scheduled arrival sequence, relocations may be required to
process or finish units in the right order: In this illustration, the units Y1 and Y2

have to relocate, as they obstruct the units X1 and X2.

1.1 Problem Definition

The aim of this chapter is the modeling of a material handling system as an
integral part of a multistage production network. Since the hindrances of units
during their transport between the production stages lead to inefficiencies like
shortfalls, undesired machine stops, and later completion times, blockages of
units are to be reduced. Therefore, the reduction of units’ blocking is a central
aspect in our model.

Due to the possibility of their mutual blocking, units have to locally in-
teract and react accordingly. In order to avoid potential blockings, units also
have to act in an anticipatory way with the help of indirect interactions. This
involves avoiding critical buffer areas, in which the material flow is likely to be
hindered by a high buffer utilization. Thus, the aim is the design of a trans-
port and buffer system where local und indirect interactions help to reduce
mutual hindrances of the units.

In the following, the conveying elements (e.g. roller conveyors or plastic
chain conveyors) of material handling systems are called lanes. Intersections in
factories that are represented by chain transfers or turntables will generally be
called turntables. The transport and buffer system composed of lanes, turnta-
bles, and transport systems (e.g. transfer cars, see Fig. 1) will furthermore be
described as a mathematical graph with nodes and directed edges.

The units to be transferred are boardstacks, production waste, and aux-
iliary material such as ink boxes and cutting tools etc. They represent the
agents in our model and operate on the nodes and the edges of the graph.

Our model is the basis for the simulation of transport processes in a plant,
while a production of the units and their material handling is simulated with
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given production programs. The ultimate goal is to avoid hindrances to units
in the real plant in order to transport them within the system to their destina-
tion on time. Simulation can help optimize both, the transport processes given
a superordinate production plan of the overall production and the planning
itself, if it integrates a model of the transport and buffer system.

1.2 Organization of This Chapter

Within the first part of the chapter, the theoretical model of the transport
and buffer system is introduced. The second part addresses applications of
the model and examines the behavior of the units.

Section 2 provides an overview of agent-based modeling and its application
to the description of transport and buffer systems. In Sect. 3, an overview of
the methods used to model the production system is given, without presenting
the mathematical and algorithmic details. These are provided in [65].

The mathematical abstraction of the functional interrelationship in a real
factory is described in Sect. 4, in particular the illustration of the transport
and buffer system as a mathematical graph with nodes and directed edges.
Afterwards, Sect. 5 summarizes the treatment of transport processes described
in the previous sections.

The implementation of our model in a simulation environment is described
in the second part, which begins with Sect. 6. In Sect. 7, we examine the
factors contributing to a cooperative behavior of the units. Our contribution
concludes with a discussion of the pros and cons of the modeling approach
and evaluates the practical relevance for production systems.

2 Relation to the Previous Literature

2.1 Material Handling Elements as Part of Production Networks

Production systems are generally modeled at different levels of aggregation.
Frequently, the description of individual material handling elements and their
interaction in larger systems is done within the framework of queuing theory
[31, 27, 2, 28, 4]. However, the necessary sequence of the entrance of single
units into the workstation is difficult to handle. In addition, the analytical
and numerical effort increases with the degree of complexity of the system
and the level of detail of the elements being described.

Therefore, entire production networks or supply chains are often modeled
by means of macroscopic approaches, e.g. fluid-dynamic ones [36, 37, 3]. These
do not distinguish individual units, which are rather modeled by event-driven
simulations [7, 46, 19]. Other modeling approaches are Petri nets and the
max-plus algebra [6, 61, 47, 18]. One interesting feature of the latter is the
possibility of analytical calculations, but a disadvantage is the effort required
to adapt the description to new or modified setups.
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2.2 Agent-Based Modeling of the Transport and Buffer System

Agent-based modeling allows one to describe the complex interactive behav-
ior of many individual units [17, 73, 72, 25]. Wooldridge [74] describes an
“intelligent agent” as a computer that has the ability to perform flexible and
autonomous actions in a certain environment, in order to achieve its planned
goals. Agents show

• reactive behavior in relation to the environment,
• proactive behavior (by showing initiative and acting anticipatively), and
• social (e.g. cooperative) behavior.

These kinds of behavior are realized by the description of an energy and a
utility function respectively, that are optimized in a distributed way. Further-
more, such an agent has the ability to forecast its future state or the state of
the other implemented agents [16]. But suitable organizational structures and
communication strategies are necessary.

A further important aspect of multi-agent systems (MAS) is the environ-
ment in which the agents interact. The given production system consisting
of the machines, connected by a transport and buffer system, constitutes the
environment of the units. In accordance with the classification of Wooldridge
[74], the units are embedded into a dynamic and discrete production system
affected by coincidences (e.g. machine breakdowns). In particular, the vari-
ability of traffic conditions in the lanes and the transfer cars is an important
factor influencing the system state.

We have chosen an agent-based approach for the modeling of the units
primarily because these agents automatically transfer their behavior to a new
layout when the factory is restructured. This makes an agent-based approach
very flexible and easy to handle. In contrast, a classical optimization approach
must be formulated for a different setup anew, which is generally quite time-
consuming.

Although our modeled units show both reactive and cooperative behavior,
our agents do not act in a fully autonomous way. They also incorporate a
certain degree of central steering, which allows one to integrate our distributed
control concept into a hierarchical optimization and production planning. Note
that it would, in principle, also be possible to implement a centrally controlled
buffer-operating strategy steering the units [32, p. 494], based on hierarchical
optimization. For this, one would usually start with the central determination
of the optimal arrival sequence at the workstations, which requires us to solve
a scheduling problem [49, 52, 50, 58]. Next, one could describe the movement
of the units to a workstation as a vehicle routing problem (VRP) [21], which
is another central optimization approach. As a result, fixed routes and time
windows would be assigned to each unit (see the overview in [13, 55, 51, 20]).
Intersecting flows (for example at turntables and chain crossovers) could be
steered in the same way as in the control of traffic lights [54, pp. 128]. However,
at least for online control, a purely central description of the entire system as
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VRP would be unsuited due to the enormous complexity of the solution space,
the numerically demanding search algorithm, and the considerable variability
of real production processes.

In contrast to the classical optimization approach sketched above, we
will in the following propose a distributed control of material flows [53, 42].
This decentralized approach fits an agent-based approach perfectly and has a
greater flexibility, robustness, and performance under largely variable condi-
tions such as the ones observed in many production systems with unexpected
machine breakdowns, last minute orders, and other surprises.

Note that, besides the units, the material handling elements of the trans-
port and buffer systems can also be treated as agents. Although the lanes
do not perform independent actions, they are involved in the interaction pro-
cesses with the units. The transfer cars are service agents, which react to
requests from the units and relocate them. The transport systems, to which
the transfer cars are assigned, can again be understood as VRP. An optimal
driving strategy for the cars can be found for a given time window by solving
this VRP [60, 45, 29, 5, 57].

2.3 Interactions as Basis for “Social” Behavior

In MAS, “social” behavior of the agents is of substantial importance. In the
last few years, promising metaheuristics have been developed for the descrip-
tion of interactions leading to cooperative behavior [13, 9, 67]: Ant Colony
Optimization (ACO) is an interesting multi-agent approach to the modeling
of transportation problems [24, 11, 12, 48, 15, 22]. ACO is motivated by so-
cial, self-organizing insects [14, 71, 10, 68, 69] (see Chap. 2 for a detailed
introduction). In ACO, the agents show the behavior of ants and move along
the edges of a mathematical graph. The goal is the creation of efficient routes
between the nodes with the help of distributed optimization [8, 66]. Indi-
rect communication between the social insects is facilitated by pheromones,
which are deposited along the edges [24, 23]. The feedback via the variable
pheromone concentration can trigger an emergent collective behavior of the
insects [59, 26].

Another approach is inspired by investigations of interactive pedestrian
behavior. The basis of these considerations are models of self-driven many-
particle systems [34]. A pedestrian regulates his or her speed and moves pur-
posefully. In addition, all individuals react to other participants according
to attractive or repulsive interaction effects (“social forces”), changing their
actual speed and direction of motion. Investigations have shown that, for
medium pedestrian densities, lanes consisting of pedestrians with the same
desired walking direction are formed [35]. In “panic situations”, however, the
increased excitement of the pedestrians may generate intermittent mutual
obstructions: Large noise amplitudes lead to a “freezing by heating effect”
[38, 39, 40, 41].
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2.4 Ingredients and Properties of the Modeled Transport and
Buffer System

As indicated before, our model of the transport and buffer system is based
on an agent-based concept. The agents represent units (or material handling
elements) that can interact in direct and indirect ways with each other. The
direct interaction takes place locally between the units in a lane and is de-
scribed by the “interaction component” (see Sect. 3.4).

For the indirect interactions, a hindrance coefficient is formulated, which
has a similar function as pheromones for social insects. It describes the ef-
fect of possible hindrances in a lane (see Sect. 3.2). For the path finding, we
use a network algorithm that was developed to solve shortest-path problems
[1]. Our algorithm considers the hindrance coefficients of the lanes and the
temporal restriction given by the scheduled arrival at the workstation (see
Sect. 3.3). The resulting indirect interactions between the units via the hin-
drance coefficients (stigmergy) support a decentralized optimization, steering
the flow of units between the workstations similarly to self-organized traffic
light control [53]. In connection with the indirect interaction principle, this
path finding induces a movement based on the current situation in the plant.
This procedure leads to proactive behavior of the units.

The problems of sorting and obstruction avoidance (see Sect. 7.3) are tack-
led by the combination of a distributed and a centralized approach (which may,
however, be reformulated in terms of a decentralized approach as well): On
the central level, all units heading for a single workstation are brought into
the correct order (according to the production schedule) by a classical sorting
procedure. The units receive their time of scheduled arrival from the assigned
destination (e.g. workstation). On the local level, the sorting takes place via
reactive local interactions (see Sect. 3.5). If a unit is blocked by another unit
in the lane due to a wrong order, the blocking unit is informed and will of-
ten decide to leave the lane, thereby clearing the congestion (see “interaction
component” in Sect. 3.4).

Thus, the model contains decentralized interactions that enable flexible
adjustments to the current situation in the plant. By local interactions, hin-
drances can be successfully resolved or even avoided. However, the scheduled
arrival at the workstation is centrally determined by the production program,
which tries to reach a high throughput at low costs (i.e. little waste and few
machine setups).

3 Overview of Model Ingredients

In the following subsections, we will describe our model, which can delineate
arbitrary networks of material handling elements. The following questions
must be answered:
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• How do units find their paths in arbitrary networks, so that they arrive at
the destination at the right time?

• How do the units interact with each other, so that they obstruct each other
as little as possible and arrive in the correct order at the destination?

• How is the future action of the units determined by the goal of avoiding
mutual hindrances?

Time
component

Unit

Path finding 
with cycling 
capability

Movement 
initiative

Destination node of 
the unit

Time period until 
scheduled arrival

Nodes and edges
of the network

Expected 
cycle time

Lane selection 
to avoid 

hindrance

Interaction
component

Hindrance
component

Dynamic
forecast

Hindrance
component

Fig. 3. Overview of modeling methods and their interdependencies.

Within our model, the plant layout is represented by a mathematical graph
with nodes and directed edges, which is described in Sect. 4 in more detail.

In general, a transport and buffer system consists of lanes (e.g. conveying
elements like roller conveyors) that can be loaded or unloaded by transport
systems like automated guided vehicles or transfer cars on tracks. The lanes
are usually equipped with engines and are automatically steered by photo
sensors. Most of the lanes carry the material in only one direction (“first in,
first out”). Therefore, the material flow of the lanes is assumed to be directed
in our model.

As in real plants, several lanes that are connected to the same transport
systems and follow the same direction of the material flow are combined into
a buffer area. The buffer areas are represented by the nodes of the graph
and are linked by the transfer systems. An edge of the graph corresponds to
a transport connection of two buffer areas. Due to the directedness of the
material flow within the lanes, the edges are directed as well.
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The model of the transport and buffer system consists of the following
procedures, whose interdependencies are illustrated in Fig. 3:

1. Dynamic Forecast of the Expected Cycle Time and Estimation
of the Possible Hindrances in Lanes: After determining a fast and
hindrance-minimal route in the system by path finding, both the expected
cycle times, and the possible hindrances of each unit in the lanes are
estimated.

2. Path Finding with Cycling Capability and Automatic Deter-
mination of the Hindrance-Minimal Buffer: A deviation from the
fastest path is permitted by an informed search strategy [62], in order to
allow moving to a hindrance-minimal buffer area. The path finding routine
has the particular capability to generate cycles in the route.

3. Movement Initiative: The unit basically decides about its transport
and buffering in the lane according to its own priority, but it considers
requests of other units in the same lane to move away.

4. Selection of the Next Lane to Avoid Hindrances: During the relo-
cation to the next buffer area, the following lane is selected, taking into
account obstructions which, at a later time, may result from entering that
lane.

Essential aspects and the results of the procedures are described in the fol-
lowing sections (for details see Appendix C in Ref. [65]).

3.1 Dynamic Forecast of the Expected Cycle Time of a Lane

In this section, we describe the operation of the lanes and the basic elements
of the transport and buffer system. The lanes are supposed to transport the
units and, at the same time, provide a buffering possibility. Therefore, it is
practically impossible to distinguish between transport and buffering in the
system. However, when modeling the entire cycle time, a distinction between
transport and buffering time is necessary. Whether a unit in a lane is buffered
or transported is decided on the basis of the superordinate buffer-operating
strategy7 or the temporal urgency of the unit to arrive at its destination on
time (see Sect. 3.4).

Transport within a buffer lane takes place in four steps (see Fig. 4):

1. The transfer car selects a lane for the unit based on the current system
conditions, the expected cycle time and the possible hindrances in the
alternative lanes. The unit then enters that lane and is carried to its last
free position to wait there.

7 Buffer-operating strategies can be divided into allocation strategies and movement
strategies [32]. The strategy of uniform distribution is a typical allocation strategy
and distributes the units uniformly over all buffer areas. The strategy “first in,
first out” is a movement strategy and performs the entrance and exit of units in
the same order.
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A unit enters 
the lane

The unit exits 
the lane

It sends a request 
for a transfer car

It decides to 
exit the lane

1.

2.

3. 4.

Fig. 4. Subsequent actions of a unit from the arrival in a lane to its removal. The
information flow is symbolized by arrows.

2. At a certain time, the unit triggers the transport to the next buffer area
by the “movement initiative”. If the unit is blocked, it reports its priority
to the blocking unit, which reports it to the next one, and so on until the
priority message reaches the first unblocked unit. Then, all units will try
to free up the lane, given their priorities are lower.

3. If the unit with the highest priority is no longer blocked after the exiting
of the hindering units, it releases a request for the transfer car.

4. As soon as the transfer car is available, it loads the unit and transfers it
to the next lane (exit of the unit).

In principle, the time period of a unit in a lane is determined by different
influence factors, which include

• actual transport,
• buffering,
• the blockage by other units in the lane, and
• the time until the requested transport to the next lane takes place.

The forecast of the cycle time starts by assuming transport with no wait-
ing (buffering). The actual duration of buffering as well as the best suitable
buffering location are determined by a path finding algorithm with cycling
capability.

The transport time t(l) on a lane l depends on its level of occupancy. The
expected cycle time of a unit entering the lane later on is estimated via the
cycle times of the units that entered and exited previously. The estimation of
the cycle time takes place by a forecast
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• of the period during which the unit is blocked by other units in the lane
(the duration from the second to the third step) and

• of the period beginning with the request for the transfer car (duration
from the third step to the fourth step).

We have performed this forecast with an adjusted method of double exponen-
tial smoothing (ES2), which is an extension of the classical single exponential
smoothing (ES1) [44, p. 60]. The ES2 can make a trend prediction (instead
of a simple smoothing performed by the ES1).

In the exponential smoothing algorithms, the observed values tn with n ∈
N and the smoothing factor α ∈ (0, 1) are given. The ES1 t̃

(1)
n calculates

t̃(1)n = t̃
(1)
n−1 + α ·

(
tn − t̃

(1)
n−1

)
(1)

with the forecast value t̃n+1 = t̃
(1)
n . By means of formula (1) the ES2 t̃

(2)
n is

calculated by
t̃(2)n = t̃

(2)
n−1 + α ·

(
t̃(1)n − t̃

(2)
n−1

)
. (2)

The forecast is then

t̃n+1 = t̃(1)n +
1

1 − α

(
t̃(1)n − t̃(2)n

)
.

Since ES2 is a trend function, it can predict unrealistically small or even neg-
ative values when the observed values decrease. We have, therefore, adjusted
the procedure in a way that takes into account the minimum possible value
tmin by

t̃n+1 ≥ tmin.

Therefore the adjustment of the ES2 has to fulfill the condition

t̃(1)n +
1

1 − α

(
t̃(1)n − t̃korrn

)
≥ tmin.

Considering formula (2), this leads to

t̃korrn = min
{

t̃korrn−1 + α ·
(
t̃(1)n − t̃korrn−1

)
, t̃(1)n + (1 − α) ·

(
t̃(1)n − tmin

)}
.

Finally, the forecast value is determined by

t̃n+1 = t̃(1)n +
1

1 − α

(
t̃(1)n − t̃korrn

)
. (3)

The prediction (3) is performed every given time step or upon entering or
exiting the lane.
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3.2 Dynamic Forecast of Possible Hindrances in a Lane

A unit has to consider also the possible hindrances in the lanes while searching
for a suitable path through the system. On the one hand, hindrances can be
considered as blockage if units that are already buffered in the lane block the
exit of another unit. On the other hand, the units in the lane can be removed
by force, in order to allow for an unhindered transport of a newly entering
unit. This will be often connected with relocation cycles.

For the estimation of possible hindrances from the point of view of a new
unit entering a lane, the sequence of all units in the lane is compared with the
scheduled order of exits. The so-called removal index R(l) counts the number
of undesired positions of units in a lane l resulting from a comparison of both
sequences (see Fig. 5).

Let us assume n units u1, . . . , un (with n ∈ N) in a lane and that unit ui will
force Ri buffering units in the same lane to perform undesired removals. Then,
the number Rn+1 for a new entering unit un+1 is determined by comparing
the priorities p(ui) of the units ui. The priority essentially reflects the urgency
of a unit to be transported to its destination (see Sect. 3.4). With increasing
priority, the necessity of transport to the next node becomes larger.

The number R = Rn+1 represents the removal index of the lane and is
calculated by means of the following iterative formula:
For the first unit u1 we have

R1 = 0. (4a)

If p(ui) < p(un+1) for all i = 1, . . . , n, then

Rn+1 = n. (4b)

If there exists an index k ∈ {1, . . . , n} with

p(uk) ≥ p(un+1) and p(ui) < p(un+1) for all i = k + 1, . . . , n,

then we set
Rn+1 = Rk + n − k. (4c)

If a unit that will potentially enter a lane l has the smallest priority of
the units in l and all units in l are descending order sorted by their priority,
no relocation cycles will be necessary, and the removal index R(l) for l is
zero. However, the more the actual sequence of the units’ priorities in a lane
deviates from the scheduled sequence in which the units should arrive at their
destination, the larger the number of undesired removals. Then the removal
index increases. If the unit un+1 that will potentially enter the lane l has the
highest priority, then all n currently buffered units in the lane must exit, i.e.
the removal index has its maximum value (R(l) = n).

Hindrances are not necessarily present in a highly occupied lane if the
newly entered unit and the units buffered in the lane have the same destina-
tion without any overlap in the expected production times according to the
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Fig. 5. Comparison of the relocation cycles with the removal index and number of
units for a buffer area with two lanes and eight positions each. a) Removal index.
b) Amount of transfer lane necessary for the relocation cycles. The causal influences
are represented by arrows. c) Buffer level.

schedule. If the actual entrance and scheduled exit sequence differ from each
other, there will be a direct correlation between the occupancy of the lane
and the removal index. The higher the occupancy of the lane, the more the
relocation cycles expected.

According to our approach, each unit tries to find a path as hindrance-
free as possible. The possible hindrances within a lane l are described by
the so-called hindrance coefficient r(l), which is calculated from the removal
index R(l) according to formula (4) and the buffer level of l. The hindrance
coefficients allow the unit to choose a favorable path to its destination. For
this, it is necessary to facilitate an indirect communication between the units.
Social insects establish this by the pheromone field [24, 23, 70]. In our model,
the hindrance coefficient plays a similar role. It is determined by the occupancy
and the removal index of the lane, which influence path finding. In this way,
foresighted action of the units is possible.
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3.3 Path Finding with Cycling Capability and Automatic
Determination of the Hindrance-Minimal Buffer

Our path finding procedure is based on the A*-algorithm, which extends Dijk-
stra’s algorithm by a destination-oriented heuristic (informed search strategy
[62, p. 94]). The goal of the path finding is a hindrance-minimal path from
the current position of the unit to the destination. Each search must fulfill
the temporal restriction given by the scheduled arrival at the workstation.

The best path of a unit is found by the simultaneous consideration of a time
and a hindrance component, which defines the temporal urgency to reach its
goal on time. In this way, the hindrance-minimal buffer area is automatically
determined.

All elements of the transport and buffer system predict their cycle times by
means of exponential smoothing (see Sect. 3.1). The path finding procedure
then determines the transport time for a path to the destination based on the
cycle times of its nodes and edges.

In the original A*-algorithm the selection of the shortest path takes place
on the basis of weighted edges. Since the estimation of possible hindrances
is an integral part of our path finding procedure, the evaluation must be
extended from a time-based to a more general assessment of utility: As the
optimal buffer, if a unit is expected to arrive on time, is the hindrance-minimal
buffer, the evaluation must also consider a hindrance component bhin besides
the time component btime (see Fig. 3). Weighting the component bhin with a
parameter βpath ≥ 0, the assessment of a node n is based on the function

btime(n) + βpath · bhin(n) . (5)

Obviously, the orientation at arrival times and the effort to avoid hin-
drances can contradict each other. Therefore, a balance between both goals
must be found. In principle, an urgent unit needs a fast path and will give
little consideration to obstructions of other units. However, if a unit has suffi-
cient time to reach its destination, the path finding selects a path minimizing
hindrances of units with higher priority. The relative strength of time orien-
tation and hindrance avoidance decides whether the units show cooperative
or egoistic behavior.

Our path finding with cycling capability permits also paths with cycles.
Therefore, a unit can potentially enter the track of a transfer car or a buffer
area another time on its path to the destination. This is particularly meaning-
ful if hindrances are considered in addition to the cycle time in the assessment
of alternative paths.

The cycling capability allows for a deviation from the fastest path if a
hindrance-minimal node can be reached. Sometimes, however, paths with cy-
cles are even time-optimal if they bypass existing hindrances efficiently.
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3.4 Movement Initiative

After completed path finding, the “movement initiative” decides about the
transport to the next buffer area or buffering in the current lane (see Fig. 6).
For this, the priority p(u) of the unit u is determined (see Sect. 3.2), consid-
ering the following evaluation components:

1. Pull component ppull(u):
• The attraction of the destination in order to be on time, considering

the predicted cycle time to the unit’s destination determined by the
path finding procedure (see Sect. 3.3) and the scheduled arrival time
(i.e. the temporal urgency as a function of transport time and arrival
time),

• the attraction of the hindrance-minimal buffer area on the path to the
destination.

2. Push component ppush(u): The repulsive force, if the unit is on a transfer
lane that is exclusively intended for transport.

3. Interaction component pinter(u): The interaction with the other units in
the lane, taking into account the removal priorities.

Destination, e.g. 
input buffer of the 
next machine

Interaction of the 
units in a lane

(interaction 
component) 

Transfer car 

Transfer lane 

Influence of the    
transfer lane on the unit 
(push component)

Interaction between unit and destination 
(pull component) 

Unit

Buffer lanes 

Fig. 6. Illustration of the movement initiative and of the interactions, considering
decisions at the exit.

If a unit decides to exit a lane, but is blocked by other units, it informs
these about its priority by means of the interaction component. Due to the
interaction between the units, the blocking units will react, and exit the lane
for the purpose of relocation cycles and a hindrance-free exit of the higher
prioritized unit in the lane.

Let us assume n units u1, . . . , un in the lane l with the unit u1 at the exit
of l. The exit of unit u1 will be decided depending on the priority p(u1) and
its components ppull(u1), ppush(u1), and pinter(u1).

The priority plane is a transferred priority. If there is a unit u in another
lane that would like to relocate to lane l, then plane = p(u) > 0; otherwise
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plane = 0. The interaction component pinter(u1) is calculated by means of

pinter(u1) =

{
plane if n = 1,

max
{
plane, ppull(u2), . . . , ppull(un)

}
if n ≥ 2,

and represents the priorities of the blocked units. The priority p(u1) is deter-
mined by its components according to

p(u1) = max
{
ppull(u1) + ppush(u1), pinter(u1)

}
.

The push and pull components are summarized, as they do not express the
hindrance of other units. Since the interaction component pinter(u1) represents
the priorities of the blocked units, it independently influences the determina-
tion of the priority p(u1).

Depending on the priority and its components in comparison with a given
decision threshold D ≥ 0, the unit u1 will exit, if one of the following condi-
tions is fulfilled:

1. Unit u1 decides upon its removal if

p(u1) ≥ D and u1 can enter a subsequent lane.
2. A removal is enforced by the handling transfer lane or by obstructed units

in the same lane if
a) ppush(u1) ≥ D or
b) pinter(u1) > ppull(u1) and pinter(u1) ≥ D.

As soon as a unit that has requested removals is not hindered anymore, it
will call the transfer car in order to exit lane l and the best subsequent lane to
enter the next buffer area will be selected. If none of the conditions is fulfilled,
the unit u1 (and all blocked units) will wait.

With increasing value of D, the unit decides to exit later, i.e. D represents
the reactivity of the unit to external events.8

3.5 Hindrance-Avoiding Selection of the Next Lane

If the movement initiative triggers the exit of a unit, a selection of the most
suitable lane in the next buffer area is needed. Of course, it would be favorable
if the units were buffered in the same sequence in which they are supposed
to exit the lane according to the (optimized) production schedule. Thus, the
best lane is the one whose sequence of units differs as little as possible from
the scheduled order of units to exit. To occupy the transfer car as little as
possible, a unit exits its lane only after the following lane has been chosen.
This guarantees that there will be empty capacity for the unit in the selected

8 More details about this decision-making process can be found in Appendix C.3.5
of [65, p. 188].
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lane when it actually reaches this lane. Altogether, the selection process has
to estimate the suitability of the lanes and to examine the availability of
sufficient buffer capacity.

The selection process is made via agent-based sorting, i.e. each unit acts as
an autonomous agent and selects the lane independently. There is no central
decision maker who performs the sorting. From the point of view of an entering
unit, the sequence of the units in the lane is compared with the scheduled order
of exits (see Fig. 7). Note, however, that a binary interchange of units is not
possible, in contrast to most conventional sorting procedures.
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Fig. 7. Comparison of the estimated number of necessary relocation cycles and the
actually measured number generated by our agent-based sorting.

The selection process consists of the following steps:

1. If the buffer area consists of only a single lane, then this lane is selected.
2. If there is more than one lane in the area and if there exists a lane with a

unit of the same job waiting at the last position of that lane for the same
workstation, then decide on this lane.

3. Otherwise, the lane selection involves the following components:
• Hindrance component bhin: For all lanes, the suitability of entering is

evaluated. This considers all hindrances that the unit has to expect and
that it may cause. The smaller the evaluation bhin(l) of the lane l, the
greater the suitability of that lane. The definition of the function bhin

determines the quality of the agent-based sorting. A feasible function
bhin is described in [65, p. 191].

• Resource component bres: Since the lanes can have different widths and
the units can have different space requirements, the lanes are evalu-
ated with respect to the utilization of the provided buffer capacity. A
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possible evaluation function is bres(l) = w(l)/wunit with the width w(l)
of the lane l and the width wunit of the deciding unit.

Finally, b(l) = bhin(l) + bres(l) is calculated for all lanes l of the buffer
area. A lane l0 is selected when it fulfills b(l0) = min

l: w(l)≥wunit

b(l).

4 Mathematical Abstraction of Interdependencies in the
Transport and Buffer System

In our agent-based approach, the layout of a plant of, for example, a packag-
ing manufacturer, is represented by a mathematical graph G with nodes and
directed edges [1, 30]. Figure 9 shows the subsequent steps in the abstraction
of a factory layout.

Corrugator

Destination

Node with minimum hindrance coefficient 
(area of the part-order buffering)

Unit

edge contained twice
node contained twice

Paths with cycles:

Fig. 8. Illustration of two paths containing the same edge twice (solid line) or
the same node twice (dashed line). Cycles are generated by selecting a hindrance-
minimal buffer area (i.e. the node with smallest hindrance coefficient).

Note that a unit can use any lane of a buffer area on its path (e.g. the
area of the part-order buffering in Fig. 8): When searching for a path to the
destination, the identification of an available link is more important than the
determination of the respective lane. Therefore, homogeneous, parallel lanes
are combined into sets of lanes, which form the nodes of the graph G (see
Fig. 9b). Since turntables do not have a given direction, each of them is an
individual node in the graph G.

The track of a transfer car connects different lanes. Similarly, the dispatch
machines (for example pallet inserters) connect several lanes, since they have
an input and an output buffer, and the number of units is not changed while
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Sinks
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Fig. 9. Different steps in the abstraction of a factory layout. a) Example of a plant
layout. b) Logical representation of the buffer system as a set of nodes of a math-
ematical graph. c) Representation of the transfer cars and the dispatch machines
as directed edges of the graph (only a subset of edges is represented). d) Resulting
mathematical graph representing the factory layout.

being processed, i.e. the machines transport an individual unit from the input
buffer to the output buffer. Both, a dispatch machine and a transfer car track
can be regarded as linkage of two nodes, i.e. they form the edges in the graph.
Since only directed edges are modeled, a bidirectional transfer (e.g. between
two neighboring turntables) is represented by two oppositely directed edges
(see Fig. 9c).

The remaining workstations (e.g. the corrugator and the converting ma-
chines) form new units, so that the number of the incoming and outgoing
units can be different. Therefore, these machines are modeled as sources and
sinks respectively, which are typically interconnected in a certain way. The
stacker of the corrugator forms stacks of raw boards for the output buffer and
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can be regarded as a source. The prefeeder of a converting machine takes the
units from the input buffer and, therefore, is a sink. The load former creates
stacks with boards and can be interpreted as a source (like the stacker of
the corrugator). Finally, we have the exits of the plant, which are sinks. The
corresponding mathematical graph G represents the interaction of the differ-
ent material handling elements of a plant in our agent-based simulation (see
Fig. 9d).

5 Description of the Movement of Units in the Modeled
System

Figure 10 summarizes the different procedures contributing to the definition
of the movement of a unit from its source to its sink (destination).

(1) (2)Destination

4.a) Path finding 
with cycling 
capability 

4.b) Calculate
transport time 

T to the 
destination

3. Time period Z
until scheduled arrival

1. Enter the 
system

5. Movement 
initiative

7. Selection of the 
next lane to avoid 

hindrance

9. Exit the 
system

Unit

2. Inform the 
destination

Destination

6. Transfer 
request to the 
transfer car

8. Relocation by 
the transfer car

Lanes with dynamic forecast of the 
expected cycle time and evaluation of 

the possible hindrances

Fig. 10. Causal operational sequence of the movement of units in the modeled
transport and buffer system.

1. The movement procedure starts with a unit’s leaving a workstation and
entering its output buffer. Consequently, the unit enters the transport and
buffer system at this time.

2. The unit transfers the information that is has entered the system to the
destination.

3. The destination schedules the sequence of the units, according to the pro-
duction program, in which they can enter the input buffer of the machine.
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From this, the destination derives their expected order of arrival, using
the expected transport time T from their current position to the destina-
tion. The scheduled arrival time Z is then transferred back to the units.
If T ≤ Z, the unit has enough time to arrive at the destination on time
and will buffer at a node for a time period Z − T . If, however T < Z, the
unit will probably not arrive on time and will get high priority.

4. Considering time period Z until the scheduled arrival at its destination,
the unit determines the best path from the current position to the input
buffer of the machine. Since the nodes of the graph abstracting the fac-
tory network may represent several homogeneous lanes, the path does not
specify the lane at this stage. The new lane is selected when the unit is
transferred to the next node. After the unit has determined its path, it
registers itself at the nodes and edges of the path. If the estimated (par-
tial) cycle times at some nodes or edges change, the unit is informed about
this. It may then adapt its expected cycle time or determine a new path.

5. The exit of the unit from the lane is decided according to different criteria
(see Fig. 6). Blocked units report their priority to the next and eventually
to the first unit in the respective lane, so that the blocking units consider
exiting.

6. If the exit was decided and the unit is not blocked, the transfer car receives
a request to relocate the unit to the next node.

7. If the next node consists of several lanes, the best lane is selected, consid-
ering the lane width and the possible hindrance of units buffered in those
lanes.

8. As soon as the relocation is completed, the unit enters a lane of the next
node, and the path finding procedure starts again.

9. If the unit arrives at its destination, it leaves the modeled system and
finishes its movement procedure.

6 Implementation of the Model in a Simulation
Environment

We have also developed a simulation software for our model of the trans-
port and buffer system. Our software consists of different modules, which are
controlled over a common program interface (see Fig. 11). The modules are
developed as independent software units communicating with each other.

The simulator contains a library for the simulation of discrete events. Dur-
ing the simulation, the behavior of the objects is recorded and passed on to
the statistics module, which automatically generates an HTML page with the
simulation results. The units and their spatiotemporal dynamics are visualized
with the help of a simulation player. Additionally, variables characterizing the
units and the production machines can be displayed in separate windows.
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Fig. 11. Program interface representing a model of a packaging plant.

7 Path Finding as Basis for the Interaction of Units

For the following analysis, we will assume the plant layout shown in Fig. 12.
Our goal is to study whether our path finding algorithm produces reasonable
results. We will start investigating the influence of certain parameters on a
single unit. Afterwards, we will continue with an analysis of the interaction
of units belonging to different production jobs.

Machine with input 
buffer as sink

TC3

TC1

TC2

TC4

TC5

N1

N2
N3

N5
N4

Unit

N6

Possible paths:

Machine with 
output buffer 
as source

M

Fig. 12. Plant layout as basis for the choice of alternative paths.
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7.1 Deviation from the Fastest Path by Variation of the Weight
Parameter βpath

According to formula (5), the evaluation function of a node in the path finding
algorithm consists of a time component and a hindrance component, which
is weighted by the parameter βpath. With βpath = 0, only time-oriented goals
are considered during the evaluation. The possibility of the deviation from
the fastest path is reached by a parameter βpath > 0. Let us assume that the
time until the scheduled arrival is Z = 1400 s and that the model parameters
are specified as listed in the following table9:

Element n Cycle time t(n) Hindrance Hindrance c(n)
coefficient r(n)

Nodes N1, N2,
N3, N6 70 s 1.5 105
Node N4 70 s 1.2 84
Node N5 70 s 1.0 70
Input buffer M 70 s 2.0 0
Edges 30 s 2.5 75

Figure 13a shows the simulation results as a function of βpath ≥ 0. The
upper diagram shows the evaluation function with its time and hindrance
components. The values of these components are only determined by the re-
spective path. They do not vary with the weight βpath, while the weighted
sum (5), of course, does. Note, however, that the overall evaluation (5) is a
smooth function, since the transition from one path to another occurs for a
value of βpath at which their overall evaluations cross each other (i.e. where
they are identical).

In Fig. 13, the transport time T and the cycle time for transport and
buffering are represented in the diagram in the middle. The cycle time contains
a buffering time if the unit arrives at the destination too early. Therefore, the
cycle time is constant and equals Z = 1400 s as long as all three paths require
lower transport times than given by this value. The transport time T changes
only when transitions to another path occur.

The lower diagrams in Fig. 13 show the evaluation of the hindrance ex-
pected during the transport. Note that, although the transport time T be-
comes larger, the overall hindrance reflecting transport and buffering decreases
at the transition points.

The simulation results presented in Fig. 13 illustrate that the path with
the shortest transport time is chosen for small values of βpath. Note, however,
that nodes N4 and N5 have lower hindrance coefficients than the other ones.
Consequently, these nodes become more attractive for larger weights βpath,

9 The hindrance c(n) of the elements n listed in the table is calculated according
to c(n) = t(n) · r(n), except for the input buffer M, for which the hindrance is set
to 0, as the units enter the input buffer already in a sorted way.
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Fig. 13. Influence on the route choice of a) the weight parameter βpath and b) the
time Z until the scheduled arrival of the unit at the input buffer M of the destination.

and the hindrance component becomes more influential on the path finding
procedure as βpath increases. Therefore, nodes N4 and N5 are integrated into
the path for sufficiently large values of βpath, although this leads to increased
transport times (see the white and light grey areas).

7.2 Deviation from the Fastest Path by Variation of the Time
Period Z Until the Scheduled Arrival at the Destination

Another important factor of path choice is the time period Z until the sched-
uled arrival at the destination. For small Z, the destination can possibly not
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be reached on time, so that a fast path is selected. The larger Z, the more
likely a hindrance-avoiding path is chosen.10

For our analysis, we have assumed the weight βpath = 1 and model pa-
rameters according to the following table:

Element n Cycle time t(n) Hindrance coefficient r(n)
Nodes N1, N3, N6 70 s 1.5
Node N2 140 s 1.5
Node N4 70 s 1.2
Node N5 70 s 1.0
Input buffer M 70 s 2.0
Edges 30 s 2.5

Figure 13b shows the simulation results as a function of the time period
Z until the scheduled arrival at the destination. For small values of Z, the
fastest path is selected with a transport time of T = 470 s. A transport via
the second path 〈N1, N6, N4, N3, M 〉 requires T = 500 s. The latter path
is only selected when the hindrance during buffering has become significant.
The first signs of hindrance effects due to buffering can be seen for Z > 470 s.

7.3 Blockage

The blockage of a node is a further variable influencing path choice. We will
show that path finding avoids nodes11 at which the material flows are in
danger of being blocked.

If the requested removals from a node are not processed, then the cycle
time for transport increases even without any additional buffering at the node,
just because of a temporary blockage of the units. Therefore, an emerging
blockage due to delayed removals of units may be reflected by large transport
cycle times.

If the units of a node are in a highly unsorted order, then the blockage
can be caused by frequent relocation cycles binding possible removal capacity.
Since the possible obstructions are described by the hindrance coefficient, a
high value of this coefficient reflects the danger of blockages.

An actual blockage of a node develops either due to delayed removals or
due to an increase in the number of hindrances. Therefore, the blockage of a
node can be recognized by its large hindrance coefficient and the increasing
cycle time for transport (even without additional buffering).

Let us now assume the scheduled arrival time Z = 1050 s, the weight
βpath = 1 and the parameters listed in the following table:

10 That applies only to the assumption of βpath > 0, so that the hindrance compo-
nent is actually considered.

11 A node can be avoided only, if there are alternative paths.
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Element n Cycle time t(n) Hindrance coefficient r(n)
Nodes N1, N3 70 s 1.5
Node N2 variable variable
Node N4 70 s 1.2
Node N5 70 s 1.0
Node N6 140 s 1.8
Input buffer M 70 s 2.0
Edges 30 s 2.5
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Fig. 14. a) Path finding as a function of cycle time t(N2) and hindrance coefficient
r(N2) of node N2. The dashed line corresponds to the isocline of constant hindrance.
b) Overall hindrance and transport time T along the isocline t(N2) = 140 s as a
function of the hindrance coefficient r(N2). One can see that the overall hindrance
may drop, while the transport time T increases.

Figure 14a shows the route choice as a function of the cycle time t(N2)
and hindrance coefficient r(N2) of node N2. For small hindrance coefficients,
the path 〈N1, N2, N3, M 〉 is always selected, since it is fastest.

However, for cycle times t(N2) smaller than 130 s, a transition to the path
〈N1, N2, N5, N4, N3, M 〉 containing the hindrance-minimal node N5 takes
place when the coefficient r(N2) grows.

If the regime of blockage of node N2 is finally reached, there is always a
transition to the path 〈N1, N6, N4, N3, M 〉, which does not contain the node
N2. Thus, the blockage of N2 is recognized and N2 is avoided. Whether or not
a node is recognized as blocked, depends on the following:
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• the intensity of the blockage, which is determined via the cycle time (with-
out buffering) and the hindrance coefficient of the node,

• parameters such as cycle times or hindrance coefficients characterizing the
efficiency of the infrastructure of the plant,

• the time period Z to the scheduled arrival at the destination, and
• the weight parameter βpath.

7.4 Cooperative Versus Egoistic Behavior

Let us now simplify the plant layout of Fig. 12 as depicted in Fig. 15. The
machine “Corrugator” produces intermediate units (boards) of two jobs. Job
j1 has 100 units with a processing time of 1 min for one unit. The second job
j2 contains four units with a processing time of 25 min per unit. The machine
“Conv M” converts12 the boards to finished packages that leave the plant at
the station “Exit”. The converting machine is supposed to complete the units
belonging to jobs j1 first, and afterwards the units of job j2.

Units of job j1

Units of job j2

N1

N2 N7 (lane for 
relocation cycles)

N5N4N6

N3

Fig. 15. Plant layout for the simulation of “social” (cooperative) behavior.

If the corrugator produces the jobs j1 and j2 in the same order as the one
in which they are converted, the minimum cycle time is Tmin = 116.25 min for
all units of job j1 from the beginning at the corrugator to the finishing of the
last unit at the converting machine.13 The efficiency of the cooperative (“so-
cial”) behavior can be quantified by comparing the actual cycle time with the

12 Typical converting processes are cutting, printing, creasing, and gluing [63].
13 A time period of about 16 min is needed for the transport of the units between

the two machines, the waiting of the converting machine, and the setup of the
machines.
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minimum time Tmin. The weight parameter βpath and the decision threshold
L are the factors influencing the (social) behavior of the units.14

Now, let the corrugator execute both jobs j1 and j2 concurrently through
duplex production (see [64]), i.e. the first unit of job j2 is finished at the same
time as the 25th unit of j1. Both jobs need 100 min processing time and will
be finished by the corrugator at the same time. The processing order at the
converting machine shall remain first j1, then j2.

As the units of job j1 have to hurry, they have a high priority to get to
their destination. Their “movement initiative” causes the units of job j2 to
consider this. Therefore, the decision threshold has only an influence on the
temporal sequence of the decision-making process. Small variations in time
can lead to large variations in the number of cycles. Obviously, this can occur
only in the regime of egoistic behavior with many cycles.

For small values of βpath, the units of job j2 select the fastest path to the
destination without consideration of the possible obstruction of units belong-

14 Actually there is another influencing parameter (see [65, p. 186]), which motivates
the unit to move to the hindrance-minimal node of the path. Since only 4 out
of 104 units behave egoistically, they are forced to cooperate in the interactions
with the others (see Fig. 6).

β

β

β

β

β
β
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ing to job j1. This causes removals15 of units belonging to job j2 and leads to
many relocation cycles (see Fig. 16a). As the units of j2 hinder the units of j1,
they show egoistic behavior. However, with increasing βpath, the units of j2
consider hindrances and decide for a buffering at node N5. By this cooperative
behavior of the units of job j2, the hindrance of the units of the more urgent
job j1 is avoided.

7.5 General Characteristics

Although our results were obtained for special plant layouts of a packaging
manufacturer, our findings can be extended to more general settings: Under
certain conditions, our model allows the units to diverge from the fastest path
to the destination. For example, if a late arrival at the destination is expected,
the unit possibly decides for a longer path if this facilitates buffering in an
area with fewer hindrances.

Furthermore, our algorithm concept allows a unit to detect a substantial
increase in the expected transport time for the decided path. If the anticipated
transport time becomes too high, the unit possibly determines a better path
to its destination and decides to bypass a congested buffer area.

In general, the characteristics of our approach reflect coordinated behavior
as it is found in real plants operated by a central and goal-oriented planner
considering reasonable prioritizations. The resulting transport of units ensures
the feeding of each workstation with the right product in the right quantity
at the right point in time [32, 43, 56].

8 Discussion

This chapter has described the modeling of transport and buffer systems based
on an arbitrary layout and the movement of the units within that system,
considering the scheduled arrival sequence at the workstations.

We have abstracted the material handling system as a mathematical graph
with nodes and directed edges. Units (representing products or work in pro-
cess) are treated as agents, which operate on the graph and interact in direct
and indirect ways. The goal of their operation is the avoidance of blockages,
which is achieved by indirect interactions minimizing the expected hindrances.
So, the reduction of hindrances in the system is facilitated by cooperative be-
havior of the agents.

Our model contains decentralized decisions, which enable a flexible ad-
justment to the current situation in the plant. In particular, suitable local
interactions can overcome mutual hindrances of the units. A combination of
local and centralized procedures facilitates the arrival of the units at their
destination in the right sequence. On the one hand, the units are arranged in

15 The removals lead to relocation cycles via N7.
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the right order by means of a classical sorting algorithm in accordance with
the (optimized) production program. On the other hand, the units are sorted
by relocations based on local interactions.

The high flexibility with respect to the restructuring of the layout or
changes in the operation of a production system is a major advantage of the
agent-based approach. Not only can new scenarios, such as effects of machine
breakdowns or allocations of buffer areas to machines, be easily simulated and
quickly evaluated, but also the effects of newly installed machines or relocated
workstations on the operational procedures can be efficiently analyzed.

The developed simulation software can support planners in packing plants
and other manufacturers in creating better production programs. Since the
effects of the generated programs are simulated in advance, the planner can
test which production programs are expected to cause operational hindrances
in the material flows and consequential disturbances in the production, and
which ones are not.

Note that the decentralized (local) control procedures of our agent-based
approach could be also implemented by means of RFID tags attached to
the units. Due to its flexibility in the layout and operation of production
systems, this implementation would be applicable to many different plants.
Then, various control strategies could be easily implemented by adjusting a
few parameters only, thereby determining different operational programs.

Rather than using RFID tags to replace classical bar codes, our proposed
implementation would enable more flexible, robust, and efficient decentralized
control approaches in complex production systems. In our case, the units
would search for a path through the production plant in an autonomous way,
considering the scheduled completion times and hindrances in the system.
While performing this task, our agents would use rudimentary intelligence
and forecasting capabilities. This would both generate and use cooperative
(“social”) behavior of the individual units.
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Summary. The relations between swarm intelligence and organic computing are
discussed in this chapter. The aim of organic computing is to design and study com-
puting systems that consist of many autonomous components and show forms of
collective behavior. Such organic computing systems (OC systems) should possess
self-x properties (e.g., self-healing, self-managing, self-optimizing), have a decentral-
ized control, and be adaptive to changing requirements of their user. Examples of
OC systems are described in this chapter and two case studies are presented that
show in detail that OC systems share important properties with social insect colonies
and how methods of swarm intelligence can be used to solve problems in organic
computing.

1 Introduction

Organic computing is a new field of computer science with the aim to design
and understand computing systems that consist of many components and pos-
sess so-called self-x properties where “x” stands, for example, for “healing”,
“managing”, “organizing”, “optimizing” (e.g., [19, 37, 44]). One idea of or-
ganic computing is to use principles of self-organization in order to obtain
systems with self-x properties. Computing systems that possess self-x prop-
erties and follow such design principles are called organic computing systems
(OC systems).

Social insects, like ants and bees, are a particularly interesting source of
inspiration for the design of OC systems. The main reason is that social insect
colonies show a complex behavior even though the members of the colony
are relatively simple individuals. Most of these behaviors can be called self-
organized because there exists neither a central control nor a global work
plan. A behavior of the colony which can be seen on a large scale (e.g., nest
building or the formation of aggregations of thousands of individuals) but
where the individuals act only according to simple rules that use input from
their senses only about their local environment is called emergent. Examples
of such emergent behavior are nest building of termites ([21]), the formation
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of bucket brigades during foraging of ants ([2]), the election of a new nest
site by a swarm of bees ([26]), and the trail-laying behavior of ants that leads
to short paths between their nest and food sources. The latter behavior has
inspired the Ant Colony Optimization metaheuristic (see Chap. 2) that is used
to solve combinatorial optimization problems ([15]). Another example is the
behavior of ants to cluster larvae or corpses of dead ants, which has inspired
the design of different clustering algorithms (e.g. [18, 23]).

Since self-organized systems can show emergent effects it is important to
understand under which circumstances these effects might occur. Therefore,
researchers have developed models that help explain the emergent behavior
of social insects. Examples are threshold response models that have been pro-
posed to explain the foraging behavior of ants ([4, 48, 50]); self-synchronization
effects in the activity schedule of ants have been explained by models [12], and
models have been used to describe the self-organized emergence of aggrega-
tions in social insects ([13, 14]). The emergent behavior of social insects and
the related biological models have been used by researchers in swarm intelli-
gence to build agent systems or swarm robots and to develop new optimization
methods.

In this chapter we discuss connections between swarm intelligence and or-
ganic computing. Since organic computing is a relatively new research field it
is too early to give an overview on the relations between organic computing
and swarm intelligence. Therefore, we shortly present some example applica-
tions of organic computing methods from different areas (see Sec. 2). Then
we present two case studies that show in some detail how methods of swarm
intelligence are connected to problems in organic computing (see Sections 3
and 4).

The first study deals with the control of emergence effects in OC systems.
In general, emergent behavior is considered to be an important aspect for
OC systems (e.g., [42]). So far researchers have considered mostly the positive
aspects of emergent behavior. They try to apply the principles of emergent
behavior of natural systems to increase the capabilities of OC systems. Ideally,
the autonomous components of an OC system should be able to create a com-
plex emergent behavior without the knowledge of a global plan and without
control information that they receive from a central controller. An example of
such an emergent behavior that results from self-organization could be the task
allocation between the components or the specialization of the components
to different tasks by using reconfigurable hardware. Since a certain emergent
behavior is typically seen as a desired property of an OC system there exist
efforts to develop quantitative measures for emergence ([36]) in order to com-
pare the strength of different OC systems. But, there exists also the potential
danger that an OC system might show emergent properties that are unwanted
and have not been foreseen when the system was designed. The question that
is considered in the first part of this chapter is how an OC system can be
controlled such that certain unwanted emergent behaviors can be prevented.
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As an example model for this study the emergent clustering behavior of ants
is used.

The second study in this chapter is related to the following observation.
Typical for OC systems is that their components can adapt to environmental
conditions. Hence, even if the components are all equal in principle they will
show a slightly different behavior due to individual adaptations. Therefore, it
is interesting to investigate what types of emergent effects might occur due to
such slight differences in individual behavior. In this context, it is interesting
that, as has been observed, ants with slightly different movement behavior can
be found most often in different parts of the nest (see [45]). It is discussed in
the second part of this chapter what patterns might occur in OC systems with
moving components and what are their possible consequences on the behavior
of OC systems.

The content of Section 3 and 4 is based on work that has been done within
the project “Organization and Control of Self-Organizing Systems in Techni-
cal Compounds” within the German Research Foundation (DFG) priority
programme on organic computing, and is based on publications [43] and [34].

2 Examples of Organic Computing Systems

In this section we shortly present some examples of the application of organic
computing methods to different areas.

One application of organic computing in the field of hardware is the organic
computing approach for very fast image processing that was proposed in [28,
16]. This approach is called Marching Pixels (MPs). The basic idea of MP is to
use an embedded massively parallel array of pixel processor elements (PEs)
to exploit emergent algorithms in order to solve difficult image-processing
tasks. Marching pixels are seen as virtual organic units which are born, move,
unite, are mutated, leave signatures on the ground, and die on the processor
field. The task of the marching pixels is to carry out autonomously image
preprocessing tasks, e.g., detection and tracking of moving objects. For the
underlying technology there exist plans for future smart sensor chips which
will integrate hundreds of millions of transistors. One idea for realizing the
MPs approach is to use principles from the pheromone communication of ants
to guide the pixels.

An Organic-Computing-inspired System-on-Chip (SoC) architecture which
applies self-organization and self-calibration concepts to build reliable SoCs
was proposed in [5]. This type of SoC architecture — called Autonomic SoC
(ASoC) — provides lower overheads and a broader fault coverage than classical
fault-tolerance techniques. The architecture essentially splits the SoC into two
logical layers: the functional layer which contains the usual Intellectual Prop-
erty components or Functional Elements (FEs), and the autonomous layer
which consists of Autonomic Elements (AEs) and an interconnect structure
among various AEs. FEs are either general-purpose CPUs, memories, on-chip
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busses, special-purpose processing units, or system and network interfaces as
in a conventional design. AEs contain any extensions necessary to improve
the reliability of the FE and convert the FE-AE pairs into autonomous units.
The feasibility of this approach has been shown for the processing pipeline of
a public-domain RISC CPU core.

Traffic systems are another application area of organic computing. It has
been proposed to use self-organized inter-vehicle communication to recognize
traffic jams [17]. One aim of this communication is to detect the front and the
back of a traffic jam. Since the set of cars that forms the front or the back
of the traffic jam changes, data about the traffic jam have to be transferred
between the cars. Hence, a so-called “Hovering Data Cloud” is formed that is
independent of the participating vehicles and stays with the beginning or the
end of the traffic jam. This data is used to extract information for other cars
to optimize the traffic flow.

Principles of organic computing are also applied to the design of controllers
for traffic lights. Traffic flows in urban road traffic networks are changing con-
stantly and on different time scales. Unfortunately, many such changes of
traffic flow cannot be foreseen since the change might be due to public events,
road works, or sudden incidents. Therefore, traffic light controllers need the
ability to adjust quickly to changes in traffic situations and to react reason-
ably in situations that have not been anticipated in their design process. The
Organic Traffic Control (OTC) project (see [41]) develops an adaptive traffic
light controller architecture with learning capabilities. The overall architec-
ture is self-optimizing because it is traffic-responsive and can adapt to larger
changes in traffic due to a “simulation-based learning” approach.

Collaborating Traffic Lights (CTLs) is a project that tries to exploit the
increasing amount of available sensor data about traffic to address the prob-
lem of global optimization of traffic flows (see [9]). The idea is to allow the
controller or agent of the traffic lights at a junction to decide autonomously on
the appropriate phase for the junction. The controller or agent would monitor
the level of congestion at the junction under its control based on available
sensor data and use this information to decide which action to take. Over
time, the agent learns the appropriate action to take given the current level
of congestion. In order to achieve optimal system-wide performance, the set
of controllers or agents at traffic light junctions in the system should commu-
nicate their current status to controllers or agents at neighbouring upstream
and downstream junctions.

Mobile robotics is also an area where organic computing methods are
clearly useful. For example, the aim of the ORCA project ([35]) is to develop
an architecture for mobile autonomous robots that is based on organic com-
puting principles. The aim is to make the robots more reliable and robust. Also
the design should eventually be easier compared to classical (fault-tolerant)
approaches. The concepts that are used in the project are inspired by the
functioning of the human autonomous nervous system and the human im-
mune system. A robot shall be able to continuously monitor its own “health
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status” and ensure that it is stable and performing its task with optimum
performance. In contrast to more classical approaches, error situations are
not explicitly described in advance. If a new and unknown deviation from the
healthy case is observed by a robot a counteraction is taken first. Based on
success or failure, the robot will learn how to handle similar situations and
to react faster and more appropriately (similarly to how the human immune
system learns to fight against reoccurring infections).

The presented example applications of organic computing show that mo-
bile components play a central role in many OC systems. This is one reason
why methods that are inspired by the self-organized behavior of social in-
sects have a great potential for future designs of OC systems. In each of the
two following sections one such example of social-insect-inspired methods is
discussed in detail.

3 Swarm-Controlled Emergence

The use of principles of self-organization from nature seems to have great
potential for the design of OC systems. But recently there have been some
concerns that self-organized computing systems might show an emergent be-
havior that is neither wanted nor intended or foreseen when they were de-
signed. The term negative emergence has been used by some authors for such
unwanted emergent behavior (see also [38] for a discussion of emergence). One
important research question is how negative emergent behavior of OC systems
can be prevented.

One possible approach to prevent negative emergence in OC systems that
has been proposed by several researchers is to equip the systems with a so-
called observer controller subsystem [40, 46] where a set of observers collects
information about the system and based on this information the controllers
send control information to the components to influence their behavior.

A potential disadvantage of this approach is that it relies fundamentally
on (classical) controllers that send control messages to the components and
thus directly restrict the autonomy of the single components of an OC sys-
tem. Since this is against some central principles of organic computing like
self-organization and self-autonomy it is interesting to search for alternative
approaches.

In this section we present a new approach to prevent negative emergence
in OC systems. This approach was proposed in [34] and is called swarm-
controlled emergence. The general idea of swarm-controlled emergence is to
add so-called anti-emergence components (anti-components) to an OC system
which can prevent the occurrence of certain negative emergence effects. Ide-
ally, the anti-components should not behave too differently from the normal
components of the OC system. Then they can still do normal work in the
OC system (eventually less efficient though because otherwise all components
could become anti-components).
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Characteristics of the swarm-controlled emergence approach that dif-
fer fundamentally from the observer controller approach are: i) the auton-
omy of the components (neither of the normal components nor of the anti-
components) is not restricted, and ii) it is not necessary to have a correspond-
ing communication structure for delivering control information.

In the following, we describe the principal ideas of the swarm-controlled
emergence approach and give proof of concept for a test system and start
investigations on special properties of the new approach. The chosen test case
is one of the famous examples of emergent behavior of social insects which
has several applications in computer science — the clustering behavior of ants
(see [23, 24, 25, 27, 29, 30, 31, 32]). Ant clustering has been applied to solve
combinatorial problems (e.g., clustering and sorting) and to study emergence
in robotics (e.g., [10]).

3.1 Ant Clustering

Ant clustering refers to the behavior of ants to cluster their brood within the
nest center (e.g., [18]) or to cluster dead corpses so that they form so-called ant
cemeteries (e.g., [8, 10]). Both phenomena can be seen as emergent behavior
and have been addressed by simple multi-agent models.

In the ant-clustering model that was proposed in [10] (see also Sect. 4.2
of Chap. 2), several items are distributed in a two-dimensional array of cells
(at most one item per cell). Each agent walks randomly within the cell array,
picks up an item that it finds with a certain probability, carries it around, and
drops it with a certain probability. Formally, the probability pp of an unladen
agent picking up an item is pp = (k1/(k1 + f))2, where f is the fraction of
cells in the neighborhood of the agent that are occupied with items and k1 is a
threshold value. Analogously, the probability that a laden agent drops an item
if it is on a cell that is not occupied by an item is given by pd = (f/(k2 +f))2,
with k2 being a threshold value. Several methods for calculating the value
f have been proposed. One method is to count how many items have been
encountered by the agent during the last few time steps and define f as the
fraction of time steps where the agent moved across cells that are occupied
by an item. Another way to calculate f is to calculate the fraction of cells in
the von Neumann neighborhood of the agent that are occupied with an item.

It was shown that the ant-clustering model fits the clustering behavior of
real ants during the organization of cemeteries very well. More complicated
patterns, as they occur, for example, in the clustering of brood of the ant
Lepthotorax ([18]), where different types of brood are clustered in concentric
rings, need more elaborated models. This is discussed in more detail in the
second half of this chapter.

To illustrate the ant-clustering model and the concept of swarm-controlled
emergence some experiments are described for a two-dimensional cell array.
The size of the cell array that was used for the experiments is 500 × 500. In
the initial state 2,500 cells (i.e., 1/100 of all cells) are occupied by an item.
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Fig. 1. Cell array with clustering agents: distribution of items after 100,000 (upper
left), 1,000,000 (upper right), and 50,000,000 (lower) simulation steps

In all experiments 50 clustering agents were used that move on the cell array.
The neighborhood of an agent is defined as the von Neumann neighborhood
with radius 10, i.e., all cells for which dx + dy ≤ 10 are said to be in the
neighborhood of an agent, where dx and dy are the absolute distances of the
considered cell to the cell of the agent in the two dimensions. The threshold
parameters for the clustering agents were chosen as k1 = 0.05 and k2 = 0.03.
The results of a typical test run are shown in Fig. 1. It can be seen that
many small clusters have been formed after 100,000 simulation steps. With a
growing number of simulation steps the number of clusters becomes smaller
and the size of the clusters increases.

3.2 Cluster Validity and Clustering Measures

In order to study the effect of the swarm-controlled emergence approach to
clustering it is necessary to measure the quality of a clustering. Since there
exist several possibilities to define what a good clustering is several mea-
sures for the degree of clustering have been proposed in the literature. The



260 D. Merkle, M. Middendorf and A. Scheidler

measures that are used in this section are spatial entropy, summary function,
and hierarchical social entropy. These measures are described in the following.

The spatial entropy ([6, 20]) is a measure for classifying spatial distribu-
tions of items according to their cluster validity on different spatial scales.
Therefore, the two-dimensional cell array is partitioned into so-called s-
patches, i.e., subarrays of size s × s. Let pI be the fraction of cells in an
s-patch I that are occupied by an item. Then the spatial entropy Es at scale
s is defined as Es = −

∑
I∈{s−patches} pI log pI .

Two functions are introduced in the following that are often used for data
analysis because they provide a good statistic on the sizes of gaps between
items of a set R in a cell array. The first function F̂ (r) is the probability that
a random empty cell has distance r from the nearest cell that is occupied
by an item of R. Function F̂ (r) is called the Empty Space Function and
characterizes the gaps between clusters. Similarly, let Ĝ(r) be the average
distance from a random point of R to the nearest other point of R. Function
Ĝ is the Nearest-Neighbor Distance Distribution function and characterizes
how close the items within the cluster are. The so-called summary function
Ĵ(r) (see [33]) is a measure for the quality of a clustering that is based on
the F̂ and Ĝ and is defined as Ĵ(r) = (1 − Ĝ(r))/(1 − F̂ (r)). The value of
Ĵ for a pattern of items can be compared to the corresponding value for a
random pattern to find whether the pattern of items can be interpreted as
a pattern that is more clustered (or more ordered) than a random pattern.
Mathematically this is done by considering a complete random point process
with intensity λ, for which F (r) = G(r) = 1 − exp(−λ · π · r2) and J(r) = 1
hold (F , G, and J are the random functions that correspond to F̂ , Ĝ, and Ĵ).
Therefore, a value of Ĵ(r) < 1 indicates a clustered pattern, whereas a value
of Ĵ(r) > 1 can be interpreted an an ordered pattern. For the computation of
Ĵ(r) the corresponding function in the R package spatstat ([1]) was used.

The hierarchical social entropy measure was proposed in [3]. This measure
is based on a hierarchy of clusters that is computed in a bottom-up manner
as follows. The bottom of the hierarchy is formed by assigning each item its
own cluster (i.e., each cluster at the bottom contains only one item). Then
iteratively the two nearest clusters are merged, until there is only one single
cluster left. The distance between two clusters can be computed in different
ways. In this section the so-called complete linkage method measure is used
where the dissimilarity between two clusters is the maximal distance between
two arbitrary items of both clusters (the values are between 0 and 1 where
1 means two items have maximal distance). The hierarchy of clusters can be
visualized as a dendrogram that shows the agglomeration process of forming
the hierarchy as a tree. The leaves of the tree are identified with the items to be
clustered. Two nodes of the tree are siblings if their corresponding clusters are
agglomerated during the hierarchical clustering. Note that each inner node of
the dendrogram corresponds to a taxonomic level h, i.e., the two corresponding
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Fig. 2. Hierarchical social entropy; exemplary clustering situation on a 100 × 100
field (upper), resulting dendrogram (middle), and the value of the hierarchical social
entropy H(R, h) at different taxonomic levels (lower)

clusters c1 and c2 have a dissimilarity of d(c1, c2) = h. For a given taxonomic
level h the items are classified by the hierarchical clustering into clusters
C(h) = {c1, . . . , cM(h)}. The hierarchical social entropy of a set of items R
is defined as S(R) =

∫ ∞
0

H(R, h)dh where H(R, h) = −
∑M(h)

i=1 pi log2(pi) is
the social entropy of R at level h (pi is the fraction of items in cluster ci). The
hierarchical social entropy enables a total ordering according to the diversity
of situations where items are distributed in a (two-dimensional) space. Note
that the hierarchical social entropy is scale-invariant and allows us to address
the extent of differences between clusters. In [3] the hierarchical social entropy
was used to calculate the diversity of a group of robots in space. In this section
it is used to distinguish between fine-grained and coarse-grained clustering
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situations. In Fig. 2 a clustering situation, the resulting dendrogram, and the
value of the social entropy at different taxonomic levels is depicted.

3.3 Anti-clustering

The emergent clustering effect in the clustering ant model that was described
in Sect. 3.1 is considered in the rest of this section as an unwanted negative
emergent effect. Clearly, the clustering effect has a biological relevance and it
can be used positively for various applications in computer science. But it is
also possible to consider it as unwanted to use it as an example application
for the swarm-controlled emergence approach. The idea of swarm-controlled
emergence is to add agents to the system that behave similarly to the standard
agents but can prevent (or reduce) the clustering effect. These agents are called
anti-clustering agents, or AC-agents. In the following, three types of AC-agents
are described.

i. Reverse AC-agents have a behavior which is opposite to the behavior of
the standard agents in order to prevent clustering in the following sense.
The values of two probabilities pp and pd that an agent picks up an item
or drops an item in a certain situation are exchanged.

ii. Random AC-agents pick up an item always when they enter a cell that is
occupied by an item. If such an agent carries an item it drops it with a
fixed probability (probability 0.1 is used in the experiments described in
this section). The idea is that the introduction of sufficient randomness in
the clustering process in the sense that items are placed on random cells
should hinder a strong clustering.

iii. Deterministic AC-agents use a deterministic strategy. An agent always
picks up the item if it enters a cell that is occupied by an item and always
drops the item if no item is in the neighborhood of the current cell.

Experimental results are described in the following, where the influence of
the different types of anti-clustering agents is described when they are added
to a system with clustering agents.

Experiments with Reverse AC-Agents

The influence of reverse AC-agents is shown in Fig. 3. In the figure the dis-
tribution of the items after 1,000,000 simulation steps is shown for different
numbers of reverse AC-agents together with 50 clustering agents. It can be seen
that it is not possible for the reverse AC-agents to hinder the standard agents
from performing a clustering. Even if 100 times more reverse AC-agents are
used the item distribution is similar for only standard agents after 1,000,000
simulation steps (see upper right part of Fig. 1). The differences between using
100 and 5000 reverse AC-agents are relatively small. For the latter the clusters
are more diffuse but the number of clusters is similar and nearly the same.
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Fig. 3. Distribution of items with different numbers of reverse AC-agents together
with 50 standard agents after 1,000,000 steps; 100 reverse AC-agents (left), 5000
reverse AC-agents (right)

This results show that it is not a trivial task to find efficient anti-clustering
agents.

The spatial entropy is E5 = 6.82 and E5 = 7.39 for 100 and 5000 reverse
AC-agents, together with 50 clustering agents. This is similar to the value of
E5 = 6.53 for the case with only clustering agents. The same holds for the
hierarchical social entropy, which is S = 11.67 and S = 12.60 for 100 and 5000
reverse AC-agents, together with 50 clustering agents. For the case with only
clustering agents a similar value of S = 11.88 is obtained for the hierarchical
social entropy.

Experiments with Random AC-Agents

The distribution of items for different numbers of random AC-agents together
with 50 clustering agents after 50,000,000 simulation steps are depicted in
Fig. 4. The figure shows that no strong clustering occurs for 100 random AC-
agents. Hence, a reasonable number of random AC-agents is able to hinder
the clustering and they might therefore be attractive candidates for use as
anti-clustering agents.

But it can also be seen that using a medium number of 50 random AC-
agents even enhances the degree of clustering compared to the cases with
fewer (0 or 10) or more 100 random AC-agents. It is an interesting observation
that the quality of the clustering can even improve with respect to using only
clustering agents when a certain number of random AC-agents is used. Even if
the clusters that occur are slightly more diffuse their number is clearly smaller
than for the case when no anti-clustering agents are used. In the former case
it can be observed that the fraction of clustering agents that carry items is
higher in later phases of the simulation runs. The reason is that the slightly
diffuse clusters make it more likely that the clustering agents pick up an item.
The result is that smaller clusters dissolve faster. It should be noted that this
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Fig. 4. Distribution of items with different numbers of random AC-agents together
with 50 clustering agents after 50,000,000 steps; 100 random AC-agents (upper left),
50 random AC-agents (upper right), 10 random AC-agents (bottom)

finding is very interesting for ant-clustering algorithms in general because it
shows the surprising fact that the addition of agents which have the effect of
making clusters more diffuse can lead to improved clustering methods.

For the hierarchical social entropy a similar observation can be made.
After 50,000,000 simulation steps the hierarchical social entropy is S = 13.64,
S = 8.07, S = 6.91, and S = 7.76 for 100, 50, 10, and no random AC-agents,
together with 50 clustering agents. Hence, there is no good clustering for 100
and 50 random AC-agents. But for a small number of 10 random AC-agents
it can be observed that the clustering quality is better than for the case with
only clustering agents.

Clearly, what a good clustering method is depends on how clustering qual-
ity is defined and it can not be expected that for each quality measure there
exist a suitable number of random AC-agents that can improve the cluster-
ing quality when compared to the case with only clustering agents. This is
illustrated for the Summary Function J(r). It can be seen in Fig. 5 that the
quality of the clustering always decreases with an increasing number of ran-
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Fig. 5. Summary Function J(r) for random AC-agents together with 50 clustering
agents at different time steps for the test runs for which the final item distribution
is shown in Fig. 4; 100 random AC-agents (upper left), 50 random AC-agents (upper
right), 10 random AC-agents (bottom)

dom AC-agents. The figure shows that no ordered item pattern occurs (the
value J(r) is always smaller than 1) and that, as expected, the more the ran-
dom AC-agents are used, the longer it takes until a certain degree of clustering
occurs. This can be seen when comparing the curves for the same number of
simulation steps in the three subfigures of Fig. 5. 100 random AC-agents pre-
vent a good clustering. The spatial entropy after 50,000,000 simulation steps
is E5 = 7.56, E5 = 6.73, E5 = 5.78, and E5 = 5.53 for 100, 50, 10, and no
random AC-agents, together with 50 clustering agents. This shows that the
clustering quality decreases with a growing number of random AC-agents.
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Fig. 6. Distribution of items with deterministic AC-agents together with 50 standard
agents after 50,000,000 steps; 50 deterministic AC-agents (upper left), 35 determin-
istic AC-agents (upper right), 10 deterministic AC-agents (bottom)

Experiments with Deterministic AC-Agents

The most interesting type of AC-agents are the deterministic AC-agents which
have a deterministic picking and dropping behavior. Figure 6 shows the item
distribution after 50,000,000 simulation steps for different numbers of anti-
clustering agents. It can be seen that 50 deterministic AC-agents clearly hinder
the clustering agents from performing a successful clustering. This has been
confirmed by tests where the initial item distribution was already clustered.
In this case the deterministic AC-agents destroyed the clustering successfully.
The deterministic AC-agents can be called efficient because they “win” against
the same number of clustering agents.

A more detailed analysis is shown in Fig. 7, in which the Summary Func-
tion J(r) is depicted. It can be seen in the upper-left subfigure that for 50
deterministic AC-agents ordered patterns occur over time (i.e., no clustering
occurs). Note that ordered patterns have been observed only for this type of
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Fig. 7. Summary Function J(r) after different number of time steps for different
numbers of deterministic AC-agents together with 50 standard agents for the test
runs where the final clustering situation is shown in Fig. 6; 50 deterministic AC-
agents (upper left), 35 deterministic AC-agents (upper right), 10 deterministic AC-
agents (bottom)

AC-agent. Using only 10 AC-agents cannot hinder the clustering agents from
performing their task successfully (see Figs. 6 and 7).

An interesting behavior can be observed for a medium number of 35 de-
terministic AC-agents. The upper-right subfigure of Figure 7 shows that after
500,000 steps ordered patterns occur, i.e., a clustering is prevented. But for
an increasing number of steps, the ordered pattern disappears and a cluster-
ing occurs. After 20 million steps the value of the Summary Function at a
radius of r = 2 is small (J(2) ≈ 0.5) but for large radiuses the value becomes
large (e.g., J(7) ≈ 7). This is very interesting, because over time a situation



268 D. Merkle, M. Middendorf and A. Scheidler

6
8

10
12

14

t

S

0 10 20 30 40 50

50 anti−agents
40 anti−agents
30 anti−agents
10 anti−agents
  0 anti−agents
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occurs where there is an ordering of items on a large scale but a clustering on
a small scale. Moreover, it shows that a system where clustering agents are
combined with anti-emergence agents can show a very complex behavior. The
occurrence of ordered patterns that prevent the emergence behavior might
exist only over certain time periods before the ordered patterns break down
and the emergent behavior can appear.

Similarly as for the random AC-agents, a medium number of deterministic
AC-agents even supports the clustering agents in their task. This can be seen
in Fig. 8 where the values of the hierarchical social entropy S are shown over
time for different numbers of deterministic AC-agents. 50 agents can prevent
a clustering (S > 14.0); when using no AC-agents a clustering with S ≈ 7 was
achieved. But a medium number of 30 deterministic AC-agents improves the
final clustering with S ≈ 6.

Summarizing Remarks

Altogether the experiments with different types of anti-clustering agents that
are added to a system with clustering agents have shown that: i) a not very
high number of random AC-agents or deterministic AC-agents is enough to
prevent the emergence of clustering, ii) only few AC-agents may help the
clustering agents to cluster the items faster, iii) a combination of AC-agents
and clustering agents may lead to situations which have an ordered pattern
on a large scale and a clustered pattern on a small scale.
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4 OC Systems with Moving Components

Emergent patterns that occur when groups of simple agents move is obviously
an interesting topic for biology (e.g., [13, 11, 47, 49]) and robotics (e.g., [10])
but it is also interesting for the design of OC systems that consist of moving
components or where parts of the system are embedded into moving objects.

In the following we discuss the emergent sorting behavior of simple ant-like
moving agents (see [45]). Sorting here means that agents with different behav-
ior can be found most often in different parts of the nest area (or movement
area). The starting point of this investigation is a study of Sendova-Franks
and Lent [45] where the authors simulate the movement behavior of real ants
in their nest. Using different models of moving behavior it was shown that
sorting occurs in all models. In each model the moving behavior of the ants
differs. The strongest sorting effect occurred when the ants’ behavior differs
by the strength of an attraction force towards the nest center (centripetal ant
model). For the other three models the ants’ behavior differs by the maximal
turning angle during movement. Ants with a small turning angle tend to keep
to the wall once they have collided with it. Thus it was concluded in [45] that
the colony center or the wall can play the role of a pivot (or beacon) which
appears to be necessary for the sorting.

First, the occurrence of high concentrations of agents in the center of the
nest area is considered here as it was observed before in the simulations of
[45]. Secondly, some changes to the movement models are described in order
to obtain a behavior that is more realistic for organic computing applications.
It is discussed which behavioral differences can lead to an emergent sorting
behavior for these movement models. Thirdly, a movement model with attrac-
tion force is investigated for the case where there is more than one center of
attraction. This scenario is interesting, for example, when there exist several
service stations for the components of the OC system.

4.1 Cellular Automata Model

The experiments with the moving agents’ models that are described in this
part have been done with a probabilistic cellular automaton model. The cel-
lular automaton was designed so that it is suitable for approximation of the
behavior of the continuous model that was used in [45]. The latter model
tries to reflect the situation and the dimensions in a real ant colony (see [43]
for more details). The cellular automaton has an array R of cells where the
length of a cell corresponds to a length of 0.4 mm. For most experiments
R = {1, . . . , 75} × {1, . . . , 50} was used. The neighborhood of a cell (x0, y0)
are all cells (x0 + x, y0 + y) with x2 + y2 ≤ 13. The body of an agent in
the cellular automaton consists of 21 cells arranged in a circle. Formally, an
agent at position (x0, y0) occupies all cells (x0 + x, y0 + y) with x2 + y2 ≤ 5.
Each agent i has an internal parameter 0 ≤ μi ≤ 1 that influences its moving
behavior and an actual direction of moving 0 ≤ αi < 2π. For each agent the
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probabilities of moving to one of the directly neighbored cells (i.e., the Moore
neighborhood n ∈ NM = {(−1,−1), . . . , (1, 1)}) are calculated. In order for
an agent to be able to move, all cells of the new place must be free (and within
the array R).

In the cellular automaton model the agents move at each time step in
random order so that each agent moves at most one cell per time step. Since
an agent can move only to discrete positions it might not be possible for an
agent to move exactly in direction α. Therefore, an agent has a probabilistic
movement behavior where α is its expected direction. Similarly, the expected
velocity is 0.3 mm/s = 0.75 cells/time step on average when considering a free
run of an agent with no obstacles.

4.2 Movement Models

In this section we describe several movement models for agents. The first two
models were proposed in [45] to model the movement behavior of real ants.

Avoiding Ant Model. In this model the agents do a correlated random walk. If
unobstructed, i.e., an agent does not collide with a nestmate or the nest wall,
the movement is as follows. The turning angle Θi is chosen randomly according
to a uniform distribution between −Θi and Θi. The maximal turning angle
Θi is different for all agents and depends on their individual parameter μi:
Θi = (1 − μi)Θ0 + μiΘ

1. In [45] the standard values were Θ0 = 60 and
Θ1 = 15. If the nest wall or a nestmate is in the sensing range, the agent
will not move but only change its moving angle. In this case it avoids the
obstacle explicitly by turning in one direction until it can move again. To
define the turning direction assume that agent i collides with agent j. The
sign of the scalar product between the vector that is perpendicular to the
vector of the moving direction of agent i and the vector from the center of
agent i to the center of agent j determines the direction of turning: Θi ←
sign((− sin αi, cos αi) · (xj − xi, yj − yi)) · r where r is chosen randomly from
a uniform distribution in the interval (0, Θi). A collision with the nest wall is
handled analogously.

Centripetal Ant Model. It is very likely that agents have the ability to detect
gradients in gas (CO2) or pheromone concentrations [39]. Since the concentra-
tion of the gas is maximal in the center region of the nest where the brood is
located [7], this could give the agent a chance to estimate the direction to the
center. In the Centripetal Ant Model this is used to establish an attraction
force towards the center of the nest. This attraction is different for different
agents and depends on their internal parameter μi. For the calculation of the
moving behavior a modified model from the clinotaxis model from [22] is used:
Θi ← puχi + pbτi · (1 − cos(φi))/2 where φi is the angle between the actual
moving direction αi and the vector towards the center of the nest. The values
of pu and pb are randomly chosen from {−1, 1} and they determine the direc-
tion of turning. The turning behavior depends on φi and the larger this angle
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Fig. 9. Effect of different values of the internal parameter μi on the turning behavior
in the Centripetal Ant Model; Z is the center of the nest; (left) for large μi there is
only a slight difference between moving from or to the center; (right) for small μi

the turning angle becomes significantly smaller the larger the angle between actual
moving direction and the vector to the center

the more the agent will turn. The parameters χi and τi depend on the internal
parameter μi of the agent: χi ← (1−μi)χ0 +μiχ

1 and τi ← (1−μi)τ0 +μiτ
1

with χ0 = 0◦, χ1 = 15◦, τ0 = 30◦, and τ1 = 0◦. Agents with larger μi will
not be that much affected by their φi as agents with small μi (see Fig. 9).
Therefore, for the agents with small μi the attraction to the colony center is
larger than for agents with large μi.

It was shown in [43] that when the agents move according to the Cen-
tripetal Ant Model there occurs a cluster of non-moving agents in the center
of the nest. Obviously, such a situation should not occur in OC systems.
Therefore, the following variation of the movement models has been intro-
duced. This model is also simple but the agents try to avoid a situation where
they get stuck.

Model with Repulsive Behavior (Repulsive Model). The Centripetal Ant Model
is slightly changed by modifying the agents’ behavior in the case of a collision
with a nestmate or the nest wall. In this case the agent turns according to
the Avoiding Ant Model. Otherwise the moving behavior remains as in the
Centripetal Ant Model. Hence, in the Repulsive Model the turning behavior
of the agent is different for different situations.

For OC systems with moving components the question emerges whether
small differences in speed or activity of the components can lead to a sorting
effect. Differences in speed or activity can obviously occur when different types
of components are used in such systems. But they might also occur when the
components have power supplies of different quality or some components are
loaded and carry items whereas other components are unloaded. An interest-
ing question is whether differences in speed or activity between the agents
can lead to a sorting effect even for very simple types of ant-like movement
behavior. To investigate this two new movement models have been introduced
that are described in the following.

Model with Speed Differences (Speed Model). In this model the agents have
different velocities. The velocities are equidistantly distributed between ν0,
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0 < ν0 < 1, and 1, i.e., νi = ν0 + (i − 1)(1 − ν0)/(n − 1) for i ∈ {1, . . . , n}.
Note that agent i moves νi times as fast as agent n. The position of the agents
is now updated according to the formulas xi ← xi + νi · δ · cos αi and yi ←
yi + νi · δ · sin αi. The different velocities are realized in the stochastic cellular
automaton such that agent i has expected velocity νi ·0.3 mm/s (recall that 0.3
mm/s is approximately the speed of a real ant). The movement and turning
behavior are the same for all agents and do not depend on their internal
parameter μi. All agents move and turn like an agent in the Centripetal Model
with μi = 0.

Model with Activity Differences (Activity Model). The Activity Model is simi-
lar to the Speed Model. The difference is that the agents have not only different
velocities but also different turning behaviors. Similarly to the velocities, the
turning angle is scaled by νi. Formally, if agent i can move, its turning angle
is determined according to αi ← αi + νi · Θi, with Θi calculated as in the
Centripetal Ant Model. If the agent is obstructed, the turning behavior is
defined as in the Avoiding Ant Model.

4.3 Experiments with Simple Environments

If not stated otherwise all experiments that are described in the following have
been done over 100,000 time steps with 40 agents. The colony center is the
point Z = (35, 25). The distance of agent i from the colony center is computed
as ri(t) = d((xi · 0.4 − 0.2, yi · 0.4 − 0.2), (15, 10)) where (xi, yi) is the center
of agent i in time step t. The distance ri of agent i from the colony center
is measured every 100 time steps. For a given time step t the mean distance
rø
i (t) of agent i from the center is the average over all measured distances

up to t. Let rø
i = rø

i (100000) be the average distance measured over all time
steps.

As in [45], Pearson’s correlation coefficient k is used to measure the cor-
relation of parameter μi and the mean distance of an agent from the nest
center. A high value (≈ 1) for k(t) indicates a strong correlation. As a second
measure the slope of the linear relationship between the mean agent distance
from the nest center and the internal parameter μi is measured. Given the
mean distances rø

i (t) for all agents i = 1, . . . n, the linear regression determines
values α(t) and β(t) such that the sum

∑
i=1...n(rø

i (t) − (α(t) + β(t)μi))2 is
minimized. The slope β(t) can be seen as a measure for the degree of sorted-
ness of the agents.

To depict the spatial distribution of the agents a similar strategy is used
as proposed in [45]. The nest is divided into 15 × 10 = 150 squares and
the agents are divided into five groups depending on their internal parameter
μi : [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0). For each of these intervals
the number of agents in every square was counted and divided by the total
number of agents in the group. To investigate how active the agents are in
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different areas of the nest it was counted for every cell how often an agent
enters that cell (measured over all time steps).
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Fig. 10. Changes of correlation coefficient k(t) (left) and slope β(t) (right) for
Repulsive Model, Speed Model, and Activity Model
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Fig. 11. Repulsive Model: number of time steps where an agent enters a cell (left)
and average distance to nest center rø

i (right)

The results for different movement models with respect to the correlation
coefficient k(t) and changes of the slope β(t) of the regression function are
compared in Fig. 10. The figure shows that in the Repulsive Model and in the
Speed Model the agents show a clear sorting behavior. In the Activity Model
there is no clear indication for an agent sorting.

The motivation to introduce the Repulsive Model was to prevent the agents
from getting stuck in the center of the nest. The left part of Fig. 11 shows
that the agents in the center have a high movement activity and do not get
stuck. The strength of the sorting behavior is shown in the right part of Fig.
11. Ants with μ ≈ 0 have an average distance of approximately 4 from the
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Fig. 13. Two nest centers; average number of agents for different classes μi ∈
[0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0) in the smaller of the two areas at
time step 0 (upper left), 2000 (upper right), and 50,000 (bottom); results are aver-
aged over 100 test runs

center whereas agents with μ ≈ 1 have an average distance of approximately
10. The strength of the sorting behavior for the Speed Model is shown in Fig.
12. For large relative differences in movement speed (ν0 = 0.1) the sorting
behavior is stronger than for smaller differences (ν0 = 0.3).
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Fig. 15. Activation of the nest center in the larger area after t ∈ {0, 1000, . . . , 15000}
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50,000 simulation steps

4.4 Experiments with Complex Environments

For applications in organic computing it is interesting to consider complex
environments with more than one focal point for the movement behavior. An
example where this occurs is moving components which have several service
stations they can visit. Therefore, a much larger environment of 600 cells
× 400 cells with two centers (located at (150, 200) and (450, 200)) is used
for the experiments. Simulations were done with the Speed Model and 200
agents. The area is divided vertically at position d× 600, d ∈ [0, 1], such that
in the left (right) part of area the turning behavior of the agents is influenced
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by the left (right) center. The effect is that the agents tend to turn toward
the corresponding center. Note that for d = 0.25 the line dividing both areas
passes exactly the left nest center. The agents are divided into five classes
according to their μ-values. For all classes the number of agents in the left
and right part of the area are counted for d ∈ {0.25, 0.30, . . . , 0.50}.

The number of agents at different time steps is shown in Fig. 13 (results
are averaged over 100 runs). A clear differentiation of the five agent classes
is occurring over time. At the beginning the agents are equally distributed
among the five classes for different values of d. Over time the faster agents
(large μi values) occur more often than the slow agents in the larger part of
the area.

The movement activity of agents with μi ∈ [0, 0.2) and agents with μi ∈
[0.8, 1) in different parts of the nest area for d = 0.4 is compared in Fig. 14.
It can be seen that the slow agents occur next to both centers whereas the
fast agents occur mainly in the part of the area with the center that has the
larger influence region. These results show that moving agents with slightly
different moving behavior can have very different spatial distributions in areas
with several service stations.

A dynamic scenario is also considered where the service stations for
the agents are not available starting from the same time. In the corre-
sponding experiment it is assumed that the center in the larger part of
the area becomes active several time steps later than the center in the
smaller region. The results are given in Fig. 15 for the case where the
center in the larger part of the area becomes active at time step t ∈
{0, 1000, . . . , 15000}. Shown is the fraction of agents in each of the classes
μi ∈ [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0) that are in the smaller
area after 50,000 simulation steps. It can be seen, that the slow agents with
μi ∈ [0.0, 0.2) are much more concentrated within the small part of the area
if the center in the other part of the area becomes active late (more than 90%
of these agents appear in the smaller part of the area if the service station
appeared after t >6000 simulation steps). The reason for this is that most of
the slower agents are still fast enough to concentrate around the center in the
small region during the first 6000 time steps. After that time they will leave
the small area only with a very small probability. On the other hand it can
be seen, that a large fraction of the faster agents (μi > 0.4) can always be
found in the larger area regardless of when the second center was added. This
mechanism can possibly be used to implement a controlled separation process
of agents with different properties in OC systems.

4.5 Summarizing Remarks

Emergent spatial sorting patterns for groups of randomly moving ant-like
agents can be observed for simple movement models when there exist slight
differences in the individual behavior of the agents. For different movement
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models the emergent spatial sorting effects have been described based on the
results of simulation studies.

Scenarios with more complex environments where the movement of the
agents can be influenced by several “center points” have also been considered.
Such scenarios are relevant for applications in organic computing where the
center points can be seen as service points for moving components of the
system. It is interesting that the relative size of the influence area of the
service points leads to an emergent effect that the spatial distribution of agents
might differ strongly for agents with only slightly different moving behavior.
A dynamic scenario where different times span between the activation times
of two service stations for the agents was studied. Simulations have shown
that the length of the time span has a significant influence on the distribution
pattern of the agents and the type of influence is different for different moving
behaviors.

5 Final Remarks

The connections between swarm intelligence and the new field of organic com-
puting have been discussed in this chapter. Organic computing systems (OC
systems) consist of many autonomous components that interact and show
forms of collective behavior. OC systems are designed to possess different
self-x properties (e.g., self-healing, self-managing, self-optimizing). Typically,
OC systems will have a decentralized control and are able to adapt to their
environment or the requirements of the user. Thus, OC systems share some
important properties with social insect colonies. Clearly, there exist also many
differences between technical systems like OC systems and biological systems
like social insect colonies. Nevertheless, it was argued in this chapter that the
similarities make methods of swarm intelligence that are often inspired by
principles of collective behavior of social insects attractive for organic com-
puting.

We have described some examples of OC systems and presented two case
studies that show in detail how methods of swarm intelligence are connected
to problems in organic computing. The topic of the first case study is a new
approach to control emergent behavior in OC systems. This method is called
swarm-controlled emergence and it was applied to control emergent clustering
effects that can occur when a group of ant-like agents take up items, carry
them around, and drop them. The starting point of the second study is an
observation that biologists made with ants. Ants with slightly different move-
ment behavior can be found on average in different parts of the nest. It is
discussed what consequences this emergent effect might have on OC systems
with moving components. Both case studies have shown that organic com-
puting is strongly linked to swarm intelligence. There is a large potential for
applications of swarm intelligence methods in organic computing and design
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problems for OC systems will provide new challenges for the development of
new swarm intelligence methods.
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G. Ciobanu, G. Păun, M.J. Pérez-Jiménez (Eds.): Applications of Membrane Computing.
X,  pages,  figs.,  tables. 

K.V. Price, R.M. Storn, J.A. Lampinen: Differential Evolution. XX,  pages,
 figs.,  tables and CD-ROM. 

J. Chen, N. Jonoska, G. Rozenberg: Nanotechnology: Science and Computation.
XII,  pages,  figs.,  tables. 

A. Brabazon, M. O’Neill: Biologically Inspired Algorithms for Financial Modelling.
XVI,  pages,  figs.,  tables. 

T. Bartz-Beielstein: Experimental Research in Evolutionary Computation.
XIV,  pages,  figs.,  tables. 

S. Bandyopadhyay, S.K. Pal: Classification and Learning Using Genetic Algorithms.
XVI,  pages,  figs.,  tables. 

H.-J. Böckenhauer, D. Bongartz: Algorithmic Aspects of Bioinformatics.
X,  pages,  figs.,  tables. 

P. Siarry, Z. Michalewicz (Eds.): Advances in Metaheuristics for Hard Optimization.

Multiobjective Problem Solving from Nature.J. Knowles, D. Corne, K. Deb (Eds.):
From Concepts to Applications. XVI, 412 pages, 7 figs., 53 tables. 8

XII, 362 pages, 43 figs., 20 tables. 8
P.F. Hingston, L.C. Barone, Z. Michalewicz (Eds.). Design by Evolution. 

XVI, 81 pages,  figs.,  tables. 

C. Blum, D. Merkle (Eds.): Swarm Intelligence: Introduction and
Applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




